Design and Mechanical Characteristic Analysis of the Pile-Wall Composite Anchorage Foundation for Cangrong Xunjiang Bridge
-
摘要: 依托苍容浔江大桥工程,对由大直径桩与桩间混凝土墙组合形成的锚碇基础的设计及受力特性开展相关研究。通过对苍容浔江大桥锚碇基础方案进行分析,阐明桥梁总体布置、锚碇基础、锚碇散索系统等方案设计,结合锚碇基础地质条件,对苍容浔江大桥南侧桩-墙组合锚碇基础的位移和内力进行分析。分析桩与墙连接形式对锚碇基础承载性能的影响,对锚碇基础采用桩与墙完全连接、桩与墙完全分离、桩与墙界面连接和纯桩基础4种桩-墙连接形式进行对比研究。结果表明:桩-墙组合基础的变形及内力在施工及挂缆运营工况下均满足需求;锚碇基础桩-墙完全连接为桩-墙连接理想最优形式,纯桩基础为桩-墙连接最差形式,但均能满足要求,且承载能力均大于2.0倍的缆力;桩-墙组合锚碇基础施工结束后,锚碇整体受力良好。Abstract: Based on the Cangrong Xunjiang Bridge project, relevant research was conducted on the design and stress characteristics of the large-diameter pile-wall composite anchor foundation. By analyzing the anchor foundation scheme of Cangrong Xunjiang Bridge, the overall layout of the bridge, anchor foundation, anchor cable system, and other design schemes were elucidated. Combined with the geological conditions of the anchor foundation, the displacement and internal force of the pile-wall composite anchor foundation on the south side of Cangrong Xunjiang Bridge were analyzed. The impact of pile-wall connection types on the bearing capacity of the anchor foundation was analyzed, and a comparative study was conducted on four types of pile-wall connection types: fully connected pile-wall, fully separated pile-wall, interface-connected pile-wall, and pure pile foundation. The research results indicate that the deformation and internal force of the pile-wall composite foundation meet the requirements under construction and cable-hoisting operation conditions. The fully connected pile-wall is the ideal optimal form, whereas the pure pile foundation is the least effective form. Despite this, both are capable of meeting the requirements and possess a bearing capacity over 2.0 times the cable force. Upon completion of the pile-wall composite anchor foundation, the overall structure is in a good state of stress.
-
Key words:
- suspension bridge /
- anchorage foundation /
- pile-wall composite /
- interface connection /
- stress analysis
-
[1] 赵小晴,詹伟,严鑫,等. 悬索桥锚碇研究现状及未来发展展望[J]. 岩土工程学报,2021,43(增刊2):150-153. [2] 张太科,尹敬泽,张鑫敏. 悬索桥地下连续墙锚碇基础技术新进展[J]. 公路,2020,65(8):162-167. [3] 王文州,崔立川,张富有. 西江特大桥“通道锚”锚碇基础应力变形反演分析[J]. 公路,2022,67(10):217-221. [4] 余竹,朱昊,何敏,等. 悬索桥根式锚碇受力特性分析[J]. 公路交通科技,2022,39(6):91-96. [5] 张太科,石海洋,张鑫敏,等. 泥皮对地连墙复合式锚碇基础承载性能影响的研究[J]. 公路,2022,67(3):99-107. [6] 程晔,罗灯,陈旭浩,等. 嵌入软岩的地下连续墙锚碇基础承载特性研究[J]. 公路,2021,66(8):115-123. [7] 罗林阁,崔立川,石海洋,等. 地连墙-重力式复合锚碇基础承载性能试验研究[J]. 岩土力学,2019,40(3):1049-1058. [8] 崔苗苗,文望青,严爱国,等. 甬舟铁路金塘水道双悬索桥方案共锚碇深水基础研究[J]. 铁道标准设计,2020,64(6):69-73. [9] 肖德存,王碧波,易伦雄,等. 宜昌伍家岗长江大桥江南侧锚碇基础与地基设计[J]. 桥梁建设,2021,51(5):95-100. [10] 王志诚,梁振有,闫永伦,等. 棋盘洲长江公路大桥南锚碇地下连续墙设计[J]. 桥梁建设,2018,48(2):89-93. [11] BRINKGRAVE R B J,BROERE W. PLAXIS 3D reference manual[M]. Annapolis:PLAXIS Company,2010:64-65. -
点击查看大图
计量
- 文章访问数: 7
- HTML全文浏览量: 2
- PDF下载量: 0
- 被引次数: 0
登录
注册
E-alert
登录
注册
E-alert
下载: