Static and Dynamic Performance Analysis of Continuous Welded Stainless Steel Roofing System at Ambient Temperature
-
摘要: 为研究环境温度对连续焊接不锈钢屋面系统静动力性能的影响,首先以青岛胶东国际机场航站楼连续焊接不锈钢屋面为参考,设计并制作了5个试件;然后对其进行循环温度作用下的静力试验及稳定温度作用下的动力试验;最后运用ABAQUS软件建立较精确的有限元模型,根据相关基础理论,通过飞蛾扑火算法优化支持向量机(MFO-SVM)的模型修正方法,完成对初始有限元模型的修正。以试件WG5为例对比试验与有限元结果进行具体分析。结果表明:试验得到了结构应力与温度呈正相关,而结构频率与温度呈负相关的变化规律,前者趋势近似呈线性,后者变化率在0.7%~1.3%范围内。MFO-SVM模型修正后,基频误差由最初的13%左右下降到5%以下,数值模拟结果与实测应力极值误差范围约在4%~16%,表明修正后模型能够较好地反映结构真实结构响应。Abstract: This study investigates the influence of ambient temperature on the static and dynamic properties of a continuously welded stainless steel roofing system. First, five specimens were designed and fabricated based on the system used in the terminal of Qingdao Jiaodong International Airport. Then, satic tests were conducted under cyclic temperatures, and dynamic tests under stable temperatures.Finally, ABAQUS software was used to establish a more accurate finite element model.According to the relevant basic theories, the initial model was modified using a Support Vector Machine (SVM) model optimized by the Moth-Flame Optimization (MFO) algorithm. Taking specimen WG5 as an example, a detailed comparison was made between the experimental and finite element analysis results. The results showed that the structural stress was positively correlated with temperature, exhibiting an approximately linear trend, while the structural frequency was negatively correlated, with a rate of change between 0.7% and 1.3%. After modifying the MFO-SVM model, the fundamental frequency error decreased from approximately 13% to less than 5%, and the error in the extreme stress between the numerical simulation and the measured results ranged from approximately 4% to 16%. This indicates that the modified model can better reflect the real structural response.
-
Key words:
- metal roofing system /
- thermal cycle /
- dynamic test /
- numerical simulation
-
[1] LU Q R,LI M C. Wind-resistance performance investigation of 360° vertical seam-locked roof system reinforced by sliding support and sandwich panel[J],Journal of Building Engineering,2022,45,103689. [2] 秦国鹏,刘美思,刘毅,等. 金属屋面系统抗风揭性能的试验研究[J]. 钢结构,2016,31(3):26-28. [3] OU T,WANG D Y,XIN Z Y,et al. Full-scale tests on the mechanical behaviour of a continuously welded stainless steel roof under wind excitation[J]. Thin-Walled Structures,2020,150,106680. [4] 范亚娟. 金属屋面系统抗风吸力的静力性能和疲劳性能研究[D]. 北京:北京交通大学,2016. [5] PEI Y,BAI Y,SHI Y,et al. Temperature distribution in a long-span aircraft hangar[J]. Tsinghua Science and Technology,2008,13(2):184-190. [6] 李惠,周峰,朱焰煌,等. 国家游泳中心钢结构施工卸载过程及运营期间应变健康监测及计算模拟分析[J]. 土木工程学报,2012,45(3):1-9. [7] 范重,李夏,刘家明,等. 超长大跨度结构施工阶段温度效应研究[J]. 施工技术,2016,45(14):9-16. [8] 李爱群,丁幼亮,费庆国,等. 润扬大桥斜拉桥模态频率识别的环境变异性[J]. 东南大学学报(自然科学版),2007(2):245-250. [9] 邹勇. 高耐候性铁素体不锈钢TTS445J2[C]// 中国钢结构协会房屋建筑钢结构分会2011年学术年会. 北京:中国钢结构协会,2011 [10] American Architectural Manufactures Association. Test method for thermal cycling of exterior walls:AAMA501.5-2007[S]. Schaumburg:American Architectural Manufactures Association,2007. [11] 住房和城乡建设部建筑制品与构配件标准化技术委员会. 建筑幕墙热循环试验方法:JG/T 397—2012[S]. 北京:中国标准出版社,2012. [12] 中华人民共和国住房和城乡建设部. 建筑结构荷载规范:GB 50009—2012[S]. 北京:中国建筑工业出版社,2012. [13] 刘哲,丁阳,宗亮. 环境温度对圆拱形钢结构模态频率的影响研究[J]. 天津大学学报(自然科学与工程技术版),2019,52(2):183-190. -
点击查看大图
计量
- 文章访问数: 8
- HTML全文浏览量: 2
- PDF下载量: 0
- 被引次数: 0
登录
注册
E-alert
登录
注册
E-alert
下载: