Experimental Research on Seismic Performance of Steel Frame Structures with OSB-Cladded Light-Gauge Steel Shear Walls
-
摘要: 对钢框架-轻钢剪力墙结构足尺试件进行拟静力试验,得到承载力、刚度、延性性能和耗能能力等参数,分析结构受力机制、破坏模式和耗能机理,揭示轻钢剪力墙与钢框架在地震作用下的协同工作能力和滞回性能。与纯钢框架及双面覆刨花板(OSB)冷弯薄壁型钢墙体结构试验结果对比表明,轻钢剪力墙与钢框架之间耦合效果良好,框剪结构较纯钢框架极限承载力提高55.8%、初始刚度提高188.2%,结构延性系数达3.35,抗震性能良好,较易实现“强框架、弱墙体”设计理念。最后,基于等效拉压杆原理,提出钢框架-轻钢剪力墙结构抗侧刚度简化计算公式。
-
关键词:
- 钢框架-轻钢剪力墙结构 /
- 拟静力试验 /
- 耗能机理 /
- 抗侧刚度 /
- 抗震性能
Abstract: Based on the quasi-static test of full-scale specimens of steel frame structures with light-gauge steel shear walls, the bearing capacity, stiffness, ductility and energy dissipation capacity were obtained, and the stress mechanism, failure modes and energy dissipation mechanism of the structure were analyzed. The cooperative working capacity and hysteretic behavior of the light-gauge steel shear wall and the steel frame under earthquakes were revealed. Compared with the test results of the bare steel frame structure with double-sided OSB-cladded cold-formed thin-walled steel walls, it was found that the coupling effect between the light-gauge steel shear walls and the steel frame was good, the ultimate bearing capacity of the frame-shear wall structure was 55.8% higher than that of the bare steel frame, the initial stiffness increased by 188.2%, the structural ductility coefficient was 3.35, the seismic performance was good, and it was easy to realize the design concept of "strong frame, weak wall". Based on the principle of equivalent tension-compression bar, a simplified formula for calculating the lateral stiffness of steel frame structures with light-gauge steel shear walls was proposed. -
[1] 颜鹏. 刚性连接钢框架-内填钢筋混凝土剪力墙结构体系的滞回性能及抗震设计对策[D]. 西安:西安建筑科技大学,2006. [2] LUBELL A S,PRION H G L,VENTURA C E. Unstiffened steel plate shear wall performance under cyclic loading[J]. Journal of Structural Engineering,ASCE,2000,126(4):453-460. [3] 张泽男. 轻质火山渣混凝土剪力墙及其与钢框架协同工作研究[D]. 长春:长春工程学院,2018. [4] WAGNER H. Flat sheet metal girders with very thin metal webs,part Ⅰ:general theories and assumptions[R]. Washington D C:National Advisory Committee for Aeronautics,1931. [5] 郭彦林,周明. 非加劲与防屈曲钢板剪力墙性能及设计理论的研究现状[J]. 建筑结构学报,2011,32(1):1-16. [6] ELGAALY M,LIU Y B. Analysis of thin-steel-plate shear walls[J]. Journal of Structural Engineering,1997,123(11):1487-1496. [7] 郭彦利. 钢框架-内嵌冷弯薄壁型钢复合墙体抗剪滞回性能研究[J]. 南昌工程学院学报,2017,36(4):13-17. [8] 王静峰,赵鹏,汪皖黔,等. 钢框架内嵌连接轻钢龙骨注浆复合墙板结构抗震性能试验研究[J]. 建筑钢结构进展,2021,23(4):32-42. [9] 李蕾,苏明周. 内填冷弯薄壁型钢组合墙体钢框架体系滞回性能研究[J]. 水利与建筑工程学报,2012,10(6):117-120. [10] 张铮,陈笃海,江忠画,等. 钢框架-冷弯薄壁型钢剪力墙结构抗震性能试验研究[J]. 建筑钢结构进展,2022,24(6):11-19. [11] 田惠文. 新型钢框架-龙骨桁架式复合墙体结构协同工作机理及抗震性能研究[D]. 上海:同济大学,2016. [12] 全国钢标准化技术委员会. 金属材料 拉伸试验 第1部分:室温试验方法:GB/T 228.1—2021[S]. 北京:中国标准出版社,2021. [13] 国家质量监督检验检疫总局. 人造板及饰面人造板理化性能试验方法:GB/T 17657—2013[S]. 北京:中国标准出版社,2013. [14] 中华人民共和国住房和城乡建设部. 建筑抗震试验方法规程:JGJ/T 101—2015[S]. 北京:中国建筑工业出版社,2015. [15] PARK R. Evaluation of ductility of structures and structural assemblages from laboratory testing[J]. Bulletin of the New Zealand Society for Earthquake Engineering,1989,22(3):155-166. [16] 中华人民共和国住房和城乡建设部. 建筑抗震设计标准:GB/T 50011—2010[S]. 北京:中国建筑工业出版社,2024. [17] 郭鹏,何保康,周天华,等. 冷弯型钢骨架墙体抗侧移刚度计算方法研究[J]. 建筑结构学报,2010,31(1):1-8. [18] 龙驭球,包世华,袁驷,等. 结构力学教程[M]. 北京:高等教育出版社,2000. -

计量
- 文章访问数: 28
- HTML全文浏览量: 4
- PDF下载量: 1
- 被引次数: 0