中国科技核心期刊
RCCSE中国核心学术期刊
JST China收录期刊
中国建筑科学领域高质量科技期刊分级目录

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

大语言模型在建筑工程中的应用测试与讨论

覃思中 郑哲 顾燚 陆新征

覃思中, 郑哲, 顾燚, 陆新征. 大语言模型在建筑工程中的应用测试与讨论[J]. 工业建筑, 2023, 53(9): 162-169. doi: 10.13204/j.gyjzG23081006
引用本文: 覃思中, 郑哲, 顾燚, 陆新征. 大语言模型在建筑工程中的应用测试与讨论[J]. 工业建筑, 2023, 53(9): 162-169. doi: 10.13204/j.gyjzG23081006
QIN Sizhong, ZHENG Zhe, GU Yi, LU Xinzheng. Exploring and Discussion on the Application of Large Language Models in Construction Engineering[J]. INDUSTRIAL CONSTRUCTION, 2023, 53(9): 162-169. doi: 10.13204/j.gyjzG23081006
Citation: QIN Sizhong, ZHENG Zhe, GU Yi, LU Xinzheng. Exploring and Discussion on the Application of Large Language Models in Construction Engineering[J]. INDUSTRIAL CONSTRUCTION, 2023, 53(9): 162-169. doi: 10.13204/j.gyjzG23081006

大语言模型在建筑工程中的应用测试与讨论

doi: 10.13204/j.gyjzG23081006
基金项目: 

清华-清尚智慧场景创新设计研究院2023年公开遴选项目;中华人民共和国住房和城乡建设部科学技术计划项目(2022-K-073)。

详细信息
    作者简介:

    覃思中,男,2001年出生,博士研究生。

    通讯作者:

    陆新征,luxz@tsinghua.edu.cn。

Exploring and Discussion on the Application of Large Language Models in Construction Engineering

  • 摘要: 建筑业作为我国的经济支柱行业之一,一直面临着生产效率低、智能化水平有限等问题,大语言模型则给行业的发展带来了新的可能。首先提出了一套大语言模型在建筑工程中的应用方案,采用提示词工程和本地知识库相结合的方式来提升模型性能,通过实验分析验证其效果,并探究了本方案在行业各个领域中应用的可行性,针对部分任务提供了详细的应用案例。从实验结果中可以看出,尽管目前大语言模型在一些复杂的问题上还有较大的提升空间,但已经能初步替代建筑工程中的一些文本任务,为建筑业未来的发展提供了一个新的方向。
  • [1] GOOGLE. 体验Bard-Google的AI实验项目[EB/OL].[2023-07-20]. https://bard.google.com.
    [2] DU Z, QIAN Y, LIU X, et al. GLM:General language model pretraining with autoregressive blank infilling[C]//Proceedings of the 60th annual meeting of the association for computational linguistics. 2022:320-335.
    [3] 百度. 文心大模型-产业级知识增强大模型[EB/OL].[2023-07-20]. https://wenxin.baidu.com/.
    [4] 阿里巴巴. 通义千问[EB/OL].[2023-08-09]. https://qianwen.aliyun.com/.
    [5] 科大讯飞. 讯飞星火认知大模型[EB/OL].[2023-07-20]. https://xinghuo.xfyun.cn/.
    [6] 赵峰, 王要武, 金玲, 等. 2022年建筑业发展统计分析[J]. 工程管理学报, 2023, 37(1):1-6.
    [7] 许宪春, 王洋, 唐雅. 2022年中国经济形势分析与2023年展望[J]. 经济学动态, 2023(2):19-32.
    [8] 加快建筑业转型推动高质量发展:住房和城乡建设部建筑市场监管司副司长廖玉平解读《指导意见》[J]. 工程建设标准化, 2020(8):12-14.
    [9] 陆新征, 廖文杰, 顾栋炼, 等. 从基于模拟到基于人工智能的建筑结构设计方法研究进展[J/OL]. 工程力学:1-18[2023-09-17

    ]. http://kns.cnki.net/kcms/detail/11.2595.O3.20230117.0853.002.html.
    [10] 丁烈云, 徐捷, 覃亚伟. 建筑3D打印数字建造技术研究应用综述[J]. 土木工程与管理学报, 2015, 32(3):1-10.
    [11] 郭红领, 王尧, 马琳瑶, 等. 土木工程施工安全研究的现状与趋势[J]. 华中科技大学学报(自然科学版), 2022, 50(8):89-98.
    [12] JR B F S, HOSKERE V, NARAZAKI Y. Advances in computer vision-based civil infrastructure inspection and monitoring[J]. Engineering, 2019, 5(2):199-248.
    [13] BAEK S, JUNG W, HAN S H. A critical review of text-based research in construction:data source, analysis method, and implications[J/OL]. Automation in Construction, 2021, 132,103915. https://doi.org/10.1016/j.autcon.2021.103915.
    [14] 王煜, 邓晖, 李晓瑶, 等. 自然语言处理技术在建筑工程中的应用研究综述[J]. 图学学报, 2020, 41(4):501-511.
    [15] 刘湧泉. 我国机器翻譯工作的进展[J]. 科学通报, 1959(17):563-564.
    [16] DING Y, MA J, LUO X. Applications of natural language processing in construction[J/OL]. Automation in Construction, 2022, 136. https://doi.org/10.1016/j.autcon.2022.104169.
    [17] CALDAS C H, SOIBELMAN L, HAN J. Automated classification of construction project documents[J]. Journal of Computing in Civil Engineering, 2002, 16(4):234-243.
    [18] CALDAS C H, SOIBELMAN L. Automating hierarchical document classification for construction management information systems[J]. Automation in Construction, 2003, 12(4):395-406.
    [19] KRIZHEVSKY A, SUTSKEVER I, HINTON G E. ImageNet classification with deep convolutional neural networks[C/OL]//Advances in Neural Information Processing Systems. Curran Associates, Inc., 2012[2023-08-04]. https://proceedings.neurips.cc/paper/2012/hash/c399862d3b9d6b76c8436e924a68c45b-Abstract.html.
    [20] ALOM M Z, TAHA T M, YAKOPCIC C, et al. The History Began from Alexnet:A Comprehensive Survey on Deep Learning Approaches[M/OL]. arXiv, 2018[2023-08-04]. http://arxiv.org/abs/1803.01164. https://doi.org/10.48550/arXiv.1803.01164.
    [21] YU W der, HSU J Y. Content-based text mining technique for retrieval of CAD documents[J]. Automation in Construction, 2013, 31:65-74.
    [22] SHEN L, YAN H, FAN H, et al. An integrated system of text mining technique and case-based reasoning (TM-CBR) for supporting green building design[J]. Building and Environment, 2017, 124:388-401.
    [23] TIXIER A J P, HALLOWELL M R, RAJAGOPALAN B, et al. Automated content analysis for construction safety:A natural language processing system to extract precursors and outcomes from unstructured injury reports[J]. Automation in Construction, 2016, 62:45-56.
    [24] SALAMA D M, EL-GOHARY N M. Semantic text classification for supporting automated compliance checking in construction[J/OL]. Journal of Computing in Civil Engineering, 2016, 30(1). https://doi.org/10.1061/(ASCE)CP.1943-5487.0000301.
    [25] 汪旭. 建筑质量投诉文本分类与知识问答系统研究[D]. 武汉:华中科技大学, 2018.
    [26] VASWANI A, SHAZEER N, PARMAR N, et al. Attention Is All You Need[M/OL]. arXiv, 2023[2023-08-04]. http://arxiv.org/abs/1706.03762.
    [27] DEVLIN J, CHANG M W, LEE K, et al. BERT:Pre-training of Deep Bidirectional Transformers for Language Understanding[M/OL]. arXiv, 2019[2023-07-20]. http://arxiv.org/abs/1810.04805.
    [28] ZHENG Z, LU X Z, CHEN K Y, et al. Pretrained domain-specific language model for natural language processing tasks in the AEC domain[J/OL]. Computers in Industry, 2022, 142, 103733. https://doi.org/10.1016/j.compind.2022.103733.
    [29] PRIETO S A, MENGISTE E T, GARCÍA DE SOTO B. Investigating the Use of ChatGPT for the Scheduling of Construction Projects[J/OL]. Buildings, 2023, 13(4), 857. https://doi.org/10.3390/buildings13040857.
    [30] UDDIN S M J, ALBERT A, OVID A, et al. Leveraging ChatGPT to aid construction hazard recognition and support safety education and training[J/OL]. Sustainability, 2023, 15(9), 7121. https://doi.org/10.3390/su15097121.
    [31] JI S, PAN S, CAMBRIA E, et al. Survey on knowledge graphs:representation, acquisition, and applications[J]. IEEE Transactions on Neural Networks and Learning Systems, 2022, 33(2):494-514.
    [32] wenda-LLM/wenda:闻达:一个LLM调用平台[EB/OL]//GitHub.[2023-08-09]. https://github.com/wenda-LLM/wenda.
    [33] REIMERS N, GUREVYCH I. Sentence-BERT:Sentence embeddings using siamese BERT-Networks[C/OL]//Proceedings of the 2019 conference on empirical methods in natural language processing. Association for Computational Linguistics, 2019. https://arxiv.org/abs/1908.10084.
    [34] JOHNSON J, DOUZE M, JÉGOU H. Billion-scale similarity search with GPUs[J]. IEEE Transactions on Big Data, 2019, 7(3):535-547.
    [35] TOUVRON H, LAVRIL T, IZACARD G, et al. LLaMA:Open and Efficient Foundation Language Models[M/OL]. arXiv, 2023[2023-07-20]. http://arxiv.org/abs/2302.13971.
    [36] 叶列平. 混凝土结构(上册)[M]. 第2版. 北京:中国建筑工业出版社, 2014.
  • 加载中
计量
  • 文章访问数:  564
  • HTML全文浏览量:  203
  • PDF下载量:  36
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-08-10
  • 网络出版日期:  2023-11-08

目录

    /

    返回文章
    返回