中文核心期刊
CSCD来源期刊
中国科技核心期刊
RCCSE中国核心学术期刊
JST China收录期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

混凝土3D打印研究进展

张超 邓智聪 侯泽宇 陈春 张亚梅

张超, 邓智聪, 侯泽宇, 陈春, 张亚梅. 混凝土3D打印研究进展[J]. 工业建筑, 2020, 50(8): 16-21. doi: 10.13204/j.gyjzG20052510
引用本文: 张超, 邓智聪, 侯泽宇, 陈春, 张亚梅. 混凝土3D打印研究进展[J]. 工业建筑, 2020, 50(8): 16-21. doi: 10.13204/j.gyjzG20052510
ZHANG Chao, DENG Zhicong, HOU Zeyu, CHEN Chun, ZHANG Yamei. RESEARCH PROGRESS OF 3D PRINTING FOR CONCRETE[J]. INDUSTRIAL CONSTRUCTION, 2020, 50(8): 16-21. doi: 10.13204/j.gyjzG20052510
Citation: ZHANG Chao, DENG Zhicong, HOU Zeyu, CHEN Chun, ZHANG Yamei. RESEARCH PROGRESS OF 3D PRINTING FOR CONCRETE[J]. INDUSTRIAL CONSTRUCTION, 2020, 50(8): 16-21. doi: 10.13204/j.gyjzG20052510

混凝土3D打印研究进展

doi: 10.13204/j.gyjzG20052510
基金项目: 

国家重点研发计划资助(2017YFC0703700)。

详细信息
    作者简介:

    张超,男,1992年出生,博士研究生。

    通讯作者:

    张亚梅,ymzhang@seu.edu.cn。

RESEARCH PROGRESS OF 3D PRINTING FOR CONCRETE

  • 摘要: 混凝土3D打印凭借无模施工、节省人力、节材环保等优势,吸引了越来越多的关注,并得到了快速发展。混凝土3D打印技术的关键环节包括材料的制备、打印参数的确定以及3D打印混凝土硬化性能的形成。基于目前公开发表的研究成果,对3D打印混凝土的可打印性能与材料组成、打印参数与过程控制以及3D打印混凝土硬化性能等方面进行总结和分析,为混凝土3D打印工程实践和研究提供一定的参考。
  • [1] 丁烈云, 徐捷, 覃亚伟. 建筑3D打印数字建造技术研究应用综述[J]. 土木工程与管理学报, 2015(3):1-10.
    [2] 石从黎, 林宗浩, 陈敬,等. 3D打印混凝土技术的初探[J]. 重庆建筑, 2017(3):24-27.
    [3] LEE J, AN J, CHU A C. Fundamentals and Applications of 3D Printing for Novel Materials[J]. Applied Materials Today, 2017:120-133.
    [4] PEGNA J. Exploratory Investigation of Solid Freeform Construction[J]. Automation in Construction, 1997, 5(5):427-437.
    [5] ZHANG J, WANG J, DONG S, et al. A Review of the Current Progress and Application of 3D Printed Concrete[J]. Composites Part A, 2019, 125. DOI: 10.1016/j.compositesa.2019.105533.
    [6] PANDA B, RUAN S, UNLUER C, et al. Investigation of the Properties of Alkali-Activated Slag Mixes Involving the Use of Nanoclay and Nucleation Seeds for 3D Printing[J]. Composites Part B, 2020, 186. DOI: 10.1016/j.compositesb.2020.107826.
    [7] SCHUTTER G, LESAGE K, MECHTCHERINE V, et al. Vision of 3D Printing with Concrete:Technical, Economic and Environmental Potentials[J]. Cement & Concrete Research, 2018, 112:25-36.
    [8] 王香港, 王申, 贾鲁涛, 等. 3D打印混凝土技术在新冠肺炎防疫方舱中的应用[J]. 混凝土与水泥制品, 2020(4):1-4,13.
    [9] LONG W, TAO J, LIN C, et al. Rheology and Buildability of Sustainable Cement-Based Composites Containing Micro-Crystalline Cellulose for 3D-Printing[J]. Journal of Cleaner Production, 2019, 239. DOI: 10.1016/j.jclepro.2019.118054.
    [10] NERELLA V, NÄTHER M, IQBAL A, et al. Inline Quantification of Extrudability of Cementitious Materials for Digital Construction[J]. Cement & Concrete Composites, 2019, 95:260-270.
    [11] NERELLA V, BEIGH M, FATAEI S, et al. Strain-Based Approach for Measuring Structural Build-Up of Cement Pastes in the Context of Digital Construction[J]. Cement & Concrete Research, 2019, 115:530-544.
    [12] ROUSSEL N. Rheological Requirements for Printable Concretes[J]. Cement & Concrete Research, 2018, 112:76-85.
    [13] KETEL S, FALZONE G, WANG B, et al. A Printability Index for Linking Slurry Rheology to the Geometrical Attributes of 3D-Printed Components[J]. Cement & Concrete Composites, 2018,101:32-43.
    [14] DELPHINE M, SHIHO K, HELA B, et al. Hydration and Rheology Control of Concrete for Digital Fabrication:Potential Admixtures and Cement Chemistry[J]. Cement & Concrete Research, 2018, 112:96-110.
    [15] MEWIS J, WAGNER N. Thixotropy[J]. Advances in Colloid & Interface Science, 2009, 147-148:214-227.
    [16] ZHANG C, HOU Z, CHEN C, et al. Design of 3D Printable Concrete Based on the Relationship Between Flowability of Cement Paste and Optimum Aggregate Content[J]. Cement & Concrete Composites, 2019, 104. DOI: 10.1016/j.cemconcomp.2019.103406.
    [17] HEIKAL M, IBRAHIM N. Hydration, Microstructure and Phase Composition of Composite Cements Containing Nano-Clay[J]. Construction & Building Materials, 2016, 112:19-27.
    [18] PERROT A, RANGEARD D, PIERRE A. Structural Built-up of Cement-Based Materials Used for 3D-Printing Extrusion Techniques[J]. Materials & Structures, 2016, 49(4):1213-1220.
    [19] CHEN Y, FIGUEIREDO S, YALÇINKAYA Ç, et al. The Effect of Viscosity-Modifying Admixture on the Extrudability of Limestone and Calcined Clay-Based Cementitious Material for Extrusion-Based 3D Concrete Printing[J]. Materials, 2019, 12(9).DOI: 10.33901ma12091374.
    [20] PANDA B, UNLUER C, TAN M J. Investigation of the Rheology and Strength of Geopolymer Mixtures for Extrusion-Based 3D Printing[J]. Cement & Concrete Composites, 2018, 94:307-314.
    [21] PANDA B, TAN M J. Experimental Study on Mix Proportion and Fresh Properties of Fly Ash Based Geopolymer for 3D Concrete Printing[J]. Ceramics International, 2018, 44:10258-10265.
    [22] SUN C, XIANG J, XU M, et al. 3D Extrusion Free Forming of Geopolymer Composites:Materials Modification and Processing Optimization[J]. Journal of Cleaner Production, 2020, 258.DOI: 10.1016/j.jclepro.2020.120986.
    [23] MA G, LI Z, WANG L. Printable Properties of Cementitious Material Containing Copper Tailings for Extrusion Based 3D Printing[J]. Construction & Building Materials, 2018, 162:613-627.
    [24] WENG Y, LI M, TAN M J, et al. Design 3D Printing Cementitious Materials via Fuller Thompson Theory and Marson-Percy Model[J]. Construction & Building Materials, 2018, 163:600-610.
    [25] HAMBACH M, VOLKMER D. Properties of 3D-Printed Fiber-Reinforced Portland Cement Paste[J]. Cement & Concrete Composites, 2017, 79:62-70.
    [26] MA G, LI Z, WANG L, et al. Mechanical Anisotropy of Aligned Fiber Reinforced Composite for Extrusion-Based 3D Printing[J]. Construction & Building Materials, 2019, 202:770-783.
    [27] WENG Y, LU B, LI M, et al. Empirical Models to Predict Rheological Properties of Fiber Reinforced Cementitious Composites for 3D Printing[J]. Construction & Building Materials, 2018, 189:676-685.
    [28] LI V C, BOS F P, YU K, et al. On the Emergence of 3D Printable Engineered, Strain Hardening Cementitious Composites (ECC/SHCC)[J]. Cement & Concrete Research, 2020, 132.DOI: 10.1016/j.cemconres.2020.106038.
    [29] SOLTAN D G, LI V C. A Self-Reinforced Cementitious Composite for Building-Scale 3D Printing[J]. Cement & Concrete Composites, 2018, 90:1-13.
    [30] OGURA H, NERELLA V N, MECHTCHERINE V. Developing and Testing of Strain-Hardening Cement-Based Composites (SHCC) in the Context of 3D-Printing[J]. Materials, 2018,11(8).DOI: 10.3390/ma11081375.
    [31] GOSSELIN C, DUBALLET R, ROUX P, et al. Large-Scale 3D Printing of Ultra-High Performance Concrete:A New Processing Route for Architects and Builders[J]. Materials & Design, 2016, 100:102-109.
    [32] TAY Y, LI M, TAN M. Effect of Printing Parameters in 3D Concrete Printing:Printing Region and Support Structures[J]. Journal of Materials Processing Technology, 2019, 271:261-270.
    [33] BUSWELL R, LEAL D, JONES S, et al. 3D Printing Using Concrete Extrusion:A Roadmap for Research[J]. Cement & Concrete Research, 2018,112:37-49.
    [34] XU J, DING L, CAI L, et al. Volume-Forming 3D Concrete Printing Using a Variable-Size Square Nozzle[J]. Automation in Construction, 2019, 104:95-106.
    [35] TAY D,QIAN Y,TAN J. Printability Region for 3D Concrete Printing Using Slump and Slump Flow Test[J]. Composites Part B, 2019, 174. DOI: 10.1016/j.compositesb.2019.106968.
    [36] MECHTCHERINE V, BOS F, PERROT A, et al. Extrusion-Based Additive Manufacturing with Cement-Based Materials-Production Steps, Processes, and Their Underlying Physics:A Review[J]. Cement & Concrete Research, 2020, 132.DOI: 10.1016/j.cemconres.2020.106037.
    [37] LIU Z, LI M, WENG Y, et al. Modelling and Parameter Optimization for Filament Deformation in 3D Cementitious Material Printing Using Support Vector Machine[J]. Composites Part B, 2020,193.DOI: 10.1016/j.compositesb.2020.108018.
    [38] WANGLER T, ROUSSEL N, BOS F, et al. Digital Concrete:A Review[J]. Cement & Concrete Research, 2019, 123.DOI: 10.1016/j.cemconres.2019.105780.
    [39] WOLFS R, BOS F, SALET T. Early Age Mechanical Behaviour of 3D Printed Concrete:Numerical Modelling and Experimental Testing[J]. Cement & Concrete Research, 2018, 106:103-116.
    [40] LEX R, TIMOTHY W, NICOLAS R, et al. The Role of Early Age Structural Build-up in Digital Fabrication with Concrete[J]. Cement & Concrete Research, 2018,112:86-95.
    [41] JAYATHILAKAGE R, RAJEEV P, SANJAYAN J. Yield Stress Criteria to Assess the Buildability of 3D Concrete Printing[J]. Construction & Building Materials, 2020, 240.DOI: 10.1016/j.conbuildmat.2019.117989.
    [42] KRUGER J, ZERANKA S, ZIJL G. 3D Concrete Printing:A Lower Bound Analytical Model for Buildability Performance Quantification[J]. Automation in Construction, 2019, 106.DOI: 10.1016/j.autcon.2019.102904.
    [43] KRUGER J, CHO S, ZERANKA S, et al. 3D Concrete Printer Parameter Optimisation for High Rate Digital Construction Avoiding Plastic Collapse[J]. Composites Part B, 2020, 183.DOI: 10.1016/j.compositesb.2019.107660.
    [44] KAZEMIAN A, YUAN X, COCHRAN E, et al. Cementitious Materials for Construction-Scale 3D Printing:Laboratory Testing of Fresh Printing Mixture[J]. Construction & Building Materials, 2017, 145:639-647.
    [45] LE T, AUSTIN S, LIM S, et al. Hardened Properties of High-Performance Printing Concrete[J]. Cement & Concrete Research, 2012, 42(3):558-566.
    [46] RAHUL A, SANTHANAM M, MEENA H, et al. Mechanical Characterization of 3D Printable Concrete[J]. Construction & Building Materials, 2019,227.DOI: 10.1016/j.conbuildmat.2019.116710.
    [47] PANDA B, CHANDRA P, JEN T. Anisotropic Mechanical Performance of 3D Printed Fiber Reinforced Sustainable Construction Material[J]. Materials Letters, 2017, 209:146-149.
    [48] MECHTCHERINE, V, NERELLA V, FRANK W, et al. Large-Scale Digital Concrete Construction-CONPrint3D Concept for On-Site, Monolithic 3D-Printing[J]. Automation in Construction, 2019, 107.DOI: 10.1016/j.autcon.2019.102933.
    [49] SANJAYAN J, NEMATOLLAHI B, XIA M, et al. Effect of Surface Moisture on Inter-Layer Strength of 3D Printed Concrete[J]. Construction & Building Materials, 2018, 172:468-475.
    [50] KEITAA E, BESSAIES-BEYB H, ZUO W, et al. Weak Bond Strength Between Successive Layers in Extrusion-Based Additive Manufacturing:Measurement and Physical Origin[J]. Cement & Concrete Research, 2019, 123.DOI: 10.1016/j.cemconres.2019.105787.
    [51] WOLFS R, BOS F, SALET T. Hardened Properties of 3D Printed Concrete:The Influence of Process Parameters on Interlayer Adhesion[J]. Cement & Concrete Research, 2019, 119:132-140.
    [52] PUTTEN J G, SCHUTTER D, TITTELBOOM K. The Effect of Print Parameters on the (Micro)Structure of 3D Printed Cementitious Materials[C]//First RILEM International Conference on Concrete and Digital Fabrication.Zurich:2018.
    [53] NERELLA V, HEMPEL S, MECHTCHERINE V. Micro-and Macroscopic Investigations on the Interface Between Layers of 3D-Printed Cementitious Elements[C]//Proceedings of the International Conference on Advances in Construction Materials and Systems. Chennai:2017.
    [54] CHEN Y, FIGUEIREDO S, LI Z, et al. Improving Printability of Limestone-Calcined Clay-Based Cementitious Materials by Using Viscosity-Modifying Admixture[J]. Cement & Concrete Research, 2020, 132.DOI: 10.1016/j.cemconres.2020.106040.
    [55] NERELLA V, HEMPEL S, MECHTCHERINE V. Effects of Layer-Interface Properties on Mechanical Performance of Concrete Elements Produced by Extrusion-Based 3D-Printing[J]. Construction & Building Materials, 2019, 205:586-601.
    [56] MA G, SALMAN N, WANG L, et al. A Novel Additive Mortar Leveraging Internal Curing for Enhancing Interlayer Bonding of Cementitious Composite for 3D Printing[J]. Construction & Building Materials, 2020, 244.DOI: 10.1016/j.conbuildmat.2020.118305.
    [57] WANG L, TIAN Z, MA G, et al. Interlayer Bonding Improvement of 3D Printed Concrete with Polymer Modified Mortar:Experiments and Molecular Dynamics Studies[J]. Cement & Concrete Composites, 2020, 110.DOI: 10.1016/j.cemconcomp.2020.103571.
    [58] MARCHMENT T, SANJAYAN J, XIA M. Method of Enhancing Interlayer Bond Strength in Construction Scale 3D Printing with Mortar by Effective Bond Area Amplification[J]. Materials & Design, 2019, 169.DOI: 10.1016/j.matdes.2019.107684.
    [59] HOSSEINI E, ZAKERTABRIZI M, KORAYEM A, et al. A Novel Method to Enhance the Interlayer Bonding of 3D Printing Concrete:An Experimental and Computational Investigation[J]. Cement & Concrete Composites, 2019, 99:112-119.
    [60] ASPRONE D, AURICCHIO F, MENNA C, et al. 3D Printing of Reinforced Concrete Elements:Technology and Design Approach[J]. Construction & Building Materials, 2018, 165:218-231.
    [61] VANTYGHEM G, CORTE W, SHAKOUR E, et al. 3D Printing of a Post-Tensioned Concrete Girder Designed by Topology Optimization[J]. Automation in Construction, 2020, 112.DOI: 10.1016/j.autcon.2020.103084.
    [62] LE T, AUSTIN S, LIM S, et al. Mix Design and Fresh Properties for High-Performance Printing Concrete[J]. Materials & Structures, 2012, 45(8):1221-1232.
  • [1] 武雷, 杨超一, 万志明.  混凝土打印成型建模技术研究, 工业建筑. doi: 10.13204/j.gyjzG20052511
    [2] 张凯, 王起才, 王庆石, 李盛, 李建新.  3℃养护下引气混凝土早期强度及抗冻性能研究, 工业建筑. doi: 10.13204/j.gyjz201502002
    [3] 袁广林, 王霄, 李庆涛, 田露丹, 张云飞.  高性能灌浆料与混凝土界面黏结性能的研究, 工业建筑.
    [4] 胡芯国, 朱涵.  掺玄武岩纤维对钢筋与混凝土黏结性能的影响, 工业建筑. doi: 10.13204/j.gyjz201303018
    [5] 李艳东, 叶英华, 张健, 周煜.  混合侵蚀与冻融交替作用下混凝土性能劣化试验, 工业建筑. doi: 10.13204/j.gyjz201106025
    [6] 陈平, 王一靓, 刘婷, 刘荣进.  水淬锰铁合金渣对混凝土强度及干缩性能的影响, 工业建筑. doi: 10.13204/j.gyjz201106027
    [7] 冀晓东, 赵宁, 宋玉普.  冻融循环作用后变形钢筋与混凝土粘结性能退化研究, 工业建筑. doi: 10.13204/j.gyjz201001022
    [8] 管巧艳, 高丹盈, 李杉.  冻融循环作用后CFRP与混凝土粘结性能研究, 工业建筑. doi: 10.13204/j.gyjz201006003
    [9] 喻林, 王凤霞, 蒋林华, 李中华.  碳纤维加固混凝土的粘结性能研究, 工业建筑. doi: 10.13204/j.gyjz201010023
    [10] 孙丛涛, 牛荻涛.  混凝土中氯离子扩散性能的深入探讨, 工业建筑. doi: 10.13204/j.gyjz201009021
    [11] 李福海, 赵人达, 叶跃忠.  冻融环境下混凝土抗侵蚀性能研究, 工业建筑. doi: 10.13204/j.gyjz201006001
    [12] 乔宏霞, 周茗如, 朱彦鹏, 何忠茂.  盐渍土地区混凝土耐久性评价参数的设计和选取, 工业建筑. doi: 10.13204/j.gyjz201006007
    [13] 黄华, 刘伯权, 刘卫铎.  聚合物砂浆与混凝土抗拉粘结性能研究, 工业建筑. doi: 10.13204/j.gyjz200904022
    [14] 丁铸, 邢锋, 殷慧.  酸腐蚀下混凝土性能的变化, 工业建筑. doi: 10.13204/j.gyjz200905021
    [15] 刘军, 李英梅, 栗青.  FRP加固混凝土界面抗剪性能试验, 工业建筑. doi: 10.13204/j.gyjz200811019
    [16] 邓宗才, 李建辉.  预应力芳纶纤维布加固混凝土梁抗弯性能试验及理论分析, 工业建筑. doi: 10.13204/j.gyjz200710027
    [17] 蔡路, 陈太林, 陈磊, 王浩.  改性聚酯纤维混凝土的性能研究及其在机场道面中的应用分析, 工业建筑. doi: 10.13204/j.gyjz200710018
    [18] 高丹盈, 谢晓鹏.  在冻融作用下钢纤维混凝土的性能, 工业建筑. doi: 10.13204/j.gyjz200610018
    [19] 马昆林, 谢友均, 龙广成, 石明霞.  抗氯离子渗透高性能混凝土的配制研究, 工业建筑. doi: 10.13204/j.gyjz200611022
    [20] 胡琼, 许名鑫, 郑文忠.  影响混凝土结构抗火性能的参数仿真分析, 工业建筑. doi: 10.13204/j.gyjz200603014
  • 加载中
计量
  • 文章访问数:  8
  • HTML全文浏览量:  0
  • PDF下载量:  1
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-04-30

目录

    /

    返回文章
    返回