Research on Seismic Performance of Novel Restorable Portal Steel Piers with Built-in Energy-Dissipating Panels
-
摘要: 基于可恢复功能的理念,提出内置可更换耗能钢板的新型门式钢桥墩结构。为探讨柱顶轴力与水平反复荷载作用下新型门式钢桥墩的抗震性能,开展了6根新型门式钢桥墩试件的拟静力试验。通过分析试件破坏形态、位移-荷载曲线、骨架曲线、位移延性系数、刚度退化系数,探讨了耗能板强度、轴压比、耗能板宽厚比对新型门式钢桥墩抗震性能的影响规律。结果表明:通过设置可更换耗能钢板,新型门式钢桥墩试件的承载力和位移延性系数显著提高,试件破坏时的累积滞回耗能显著增大;轴压比和内置耗能板宽厚比对试件抗震性能影响较大;减小轴压比能够有效延缓试件的破坏,提高试件的累积滞回耗能和可恢复能力;增大内置耗能板宽厚比可以提高门式钢桥墩的变形能力和耗能能力,有利于提升新型门式钢桥墩的抗震性能和可恢复能力。Abstract: Based on the concept of restorable function, a new type of portal steel pier structure with replaceable energy-consuming steel plates was proposed. To investigate the seismic performance of a new type of portal steel bridge pier under axial force and horizontal repeated load, six specimens were tested under quasi-static loading. Based on the analysis of test phenomenon, displacement-load curve, skeleton curve, displacement ductility coefficient and stiffness degradation coefficient, the effects of the main variation parameters such as energy dissipation plate strength, axial compression ratio,and width-thickness ratio on the seismic performance of the new type of portal steel bridge piers were discussed. The results showed that the bearing capacity and displacement ductility coefficient of the new type of portal steel bridge pier specimens were significantly improved by installing replaceable energy-dissipating panels, and the cumulative hysteretic energy dissipation of the specimens increased significantly. The axial compression ratio and the width-thickness ratio of the built-in energy-dissipating panel had great influence on the seismic performance of specimens. Reducing the axial compression ratio could effectively delay the failure of the specimens and improve the cumulative hysteretic energy consumption and restorability of the specimens. Increasing the width-hickness ratio of the built-in energy-dissipating panels could improve the deformation capacity and energy dissipation capacity of the new type of portal steel bridge piers, which was conducive to improving the seismic performance and restorability of the new type of portal steel bridge piers.
-
[1] DUARTE A P C,SILVA B A,SILVESTRE N J,et al. Experimental study on short rubberized concrete-filled steel tubes under cyclic loading[J]. Composite Structures,2016,136:394- 404. [2] 高圣彬,徐旻洋,张大旭. 内填部分混凝土箱形截面钢桥墩的延性影响参数[J]. 哈尔滨工业大学学报,2014,46(12):89- 95. [3] 李文武,邱文亮,田甜,等. 部分埋置核心钢管组合桥墩抗震性能试验研究[J]. 振动与冲击,2021,40(9):19- 29,36. [4] 李辰,江辉,郭辉,等. 组合式剪力键预制拼装桥墩结构及其抗震性能研究[J]. 振动与冲击,2021,40(20):117- 126,142. [5] 刘雪山,李建中,张宏杰,等. 不同构造下的预制拼装钢管混凝土桥墩抗震性能试验[J]. 中国公路学报,2021,34(11):116- 128. [6] 王占飞,隋伟宁,李帼昌,等. 水平往复荷载作用下部分填充混凝土圆形钢桥墩柱的力学性能[J]. 中国公路学报,2015,8(1):62- 70. [7] SONG F Y,ZHANG T T,XIE X. Effect of corroded surface morphology on ultra-low cycle fatigue of steel bridge piers[J]. Materials,2021,14(3). DOI:10.3390/ma14030666. [8] 张俊萌,方从启,朱杰. 受腐蚀钢筋混凝土墩柱抗震性能试验研究[J]. 工业建筑,2015,45(3):100- 104. [9] 张建东,葛汉彬,王春林. 薄壁加劲箱形钢桥墩简化抗震评估方法[J]. 中国公路学报,2013,26(1):113- 120. [10] 王宇航,赵玉婷,周绪红,等. 圆钢管约束陶粒混凝土短柱的单轴受压试验研究及承载力计算[J]. 工业建筑2022,52(1):7- 23. [11] XIA J,ZONG Z H,XU C R,et al. Seismic performance of double-skin steel-concrete composite box piers:part I-bidirectional quasi-static testing[J]. Journal of Southeast University,2016,32(1):58- 66. [12] 韩强,董慧慧,王利辉,等. 基于可更换构件的可恢复功能桥梁防震结构研究综述[J]. 中国公路学报,2021,34(9):215- 230. [13] 张爱林,张艳霞,赵微,等. 可恢复功能的装配式预应力钢框架拟动力试验研究[J]. 振动与冲击,2016,35(5):207- 215. [14] 吕英婷,郭子雄,刘阳,等. 震损可原位修复钢桥墩设计及其抗震性能[J]. 中南大学学报(自然科学版),2019,50(8):1960- 1970. [15] 黄麟,郭展,陈誉,等. 新型摇摆自复位桥墩振动台试验研究[J]. 工业建筑,2020,50(9):83- 88. [16] 贾俊峰,魏博,欧进萍,等. 外置可更换耗能器的预制拼装自复位桥墩抗震性能试验研究[J]. 振动与冲击,2021,40(5):154- 162. [17] 石岩,钟正午,秦洪果,等. 装配铅挤压阻尼器的摇摆-自复位双柱墩抗震性能及设计方法[J]. 工程力学,2021,38(8):166- 177,203. [18] 吕西林,陈聪. 设置可更换连梁的双筒体混凝土结构振动台试验研究[J]. 建筑结构学报,2017,38(8):45- 54. [19] 钱稼茹,李宁波,赵作周,等. 震后可快速恢复功能的双钢管混凝土柱试验研究[J]. 建筑钢结构进展,2015,17(1):7- 13. [20] 吕琨德,李海锋,谢彩霞,等. 可恢复功能的箱形钢墩柱受力性能研究[J]. 工业建筑,2020,50(1):162- 169. [21] LI H F,LUO W W,LUO J. Seismic performance of steel box bridge piers with earthquake-resilient function[J]. Advances in Civil Engineering,2020,8877785. [22] 中国国家标准化管理委员会. 低合金高强度结构钢:GB/T 1591—2018[S]. 北京:中国标准出版社,2019. [23] 中国国家标准化管理委员会. 金属材料拉伸试验第 1部分:室温试验方法:GB/T 228.1—2021[S]. 北京:中国标准出版社,2022. -

计量
- 文章访问数: 23
- HTML全文浏览量: 7
- PDF下载量: 1
- 被引次数: 0