Dynamic Responses and Design Suggestions of Anti-Explosion Chambers Under Large Equivalent Explosion Loads
-
摘要: 针对现行GB 50907—2013《抗爆间室结构设计规范》中缺乏当量大于100 kg三硝基甲苯(TNT)的设计数据问题,采用LS-DYNA显式有限元软件对大当量爆炸工况下抗爆间室的动力响应进行了数值模拟。通过对不同设计参数进行参数化分析,探讨其对抗爆间室受力性能的影响,并提出设计建议。首先,将有限元结果与已有抗爆试验数据进行对比,验证了有限元模型的准确性,其中板件P2-1、P2-2、P2-3的误差分别为4.7%、12.9%和2.3%。其次,分析了抗爆间室在100~200 kg TNT当量作用下的受力变化,发现当TNT当量达到160 kg时,墙板拉结筋进入塑性变形阶段。最后,以160 kg TNT当量为基础,进一步分析了不同设计参数对抗爆间室承载力的影响。结果表明:在100~200 kg TNT当量范围内,爆炸冲击首先在侧墙底部受拉区域产生塑性区,并逐渐向外扩展;墙板连接处为主要受力集中区域。基于分析结果,建议抗爆间室的墙体厚度为600~900 mm,混凝土强度不低于C50,钢筋屈服强度不低于300 MPa,直径不小于22 mm,墙体配筋率大于0.3%,墙板连接处的加腋斜筋按主筋直径的4/5选用。Abstract: In response to the lack of design data for explosive charges greater than 100 kg trinitrotoluene (TNT) in the current Design Code for Blast-Resistant Structures (GB 50907—2013), the study utilized the explicit finite element software LS-DYNA to simulate the dynamic responses of blast-resistant chambers under large-equivalent explosion scenarios. A parametric analysis was conducted on various design parameters to investigate their impacts on the structural performance of the blast-resistant chamber, and design recommendations were proposed.Firstly, the accuracy of the simulation model was verified by comparing the finite element results with existing blast test data, showing errors of 4.7%, 12.9%, and 2.3% for panels P2-1, P2-2, and P2-3, respectively. Secondly, the study analyzed the stress variations in the blast-resistant chamber under the equivalent of 100-200 kg TNT, revealing that when the TNT equivalent reached 160 kg, the wall reinforcement entered the plastic deformation stage. Based on this, further analysis was carried out to assess the effects of different design parameters on the load-bearing capacity of the blast-resistant chamber at the 160 kg TNT equivalent. The results indicated that within the range of 100 kg to 200 kg TNT, plastic zones initially formed in the tensile region at the base of the sidewalls and gradually expanded outward. The wall panel connections emerged as the primary areas of stress concentration.Based on the analysis, it was recommended that the wall thickness of the blast-resistant chamber should be between 600 mm and 900 mm, with the concrete strength not lower than C50, the rebar yield strength not less than 300 MPa, and the rebar diameter not smaller than 22 mm. The reinforcement ratio for the walls should exceed 0.3%, and haunched diagonal rebars at the wall panel connections should be chosen at 4/5 of the main rebar diameter.
-
[1] 中华人民共和国住房和城乡建设部,中华人民共和国国家质量检验检疫总局.抗爆间室结构设计规范:GB 50907—2013[S]. 北京: 中国计划出版社, 2013. [2] 柳景春,荣超,陈力.爆炸作用下钢筋混凝土-钢板组合梁动力响应分析[J].建筑结构学报,2015,36(增刊1):349-354. [3] 师燕超, 李忠献. 爆炸荷载作用下钢筋混凝土柱的动力响应与破坏模式[J]. 建筑结构学报, 2008, 29(4): 112-117. [4] 都浩. 城市环境中建筑爆炸荷载模拟及钢筋混凝土构件抗爆性能分析[D]. 天津: 天津大学, 2009. [5] NICKERSON J, TRASBORG P, NAITO C, et al. Finite element assessment of methods for incorporating axial load effects into blast design SDOF analyses of precast wall panels[J]. Journal of Performance of Constructed Facilities, 2015,29(5): 106-112. [6] BURRELL R P, AOUDE H, SAATCIOGLU M. Response of SFRC columns under blast loads[J]. Journal of Structural Engineering, 2014, 141(9): 209-214. [7] 汪维. 钢筋混凝土构件在爆炸载荷作用下的毁伤效应及评估方法研究[D]. 长沙: 国防科学技术大学, 2012. [8] MALVAR L J, CRAWFORD J E, WESEVICH J W, et al. A plasticity concrete material model for DYNA3D[J]. International Journal of Impact Engineering, 1997, 19(10): 847-873. [9] 蓝草. 爆炸荷载作用下变厚度钢筋混凝土板的动态响应行为模拟研究[D]. 南昌: 南昌航空大学, 2019. [10] 杨桂通. 塑性动力学[M]. 北京:高等教育出版社, 2000. [11] 兰涛, 宋昭, 刘贵,等. 箱板式钢结构住宅模块单元受力机理的有限元分析[J]. 工业建筑, 2017, 47(8): 131-138. [12] 兰涛, 廖钒志, 门进杰,等. 带肋箱板式钢结构住宅底部加强区墙体抗震性能有限元分析[J]. 工业建筑, 2018, 48(9): 63-69,197. [13] CRAWFORD J E,MALVAR L J.User’s and theoretical manual for K&C concrete model: technical report TR-97-53.1[R]. Glendale,CA:Karagozian & Case, 1997. [14] MALVAR, L J,CRAWFORD J E.Dynamic increase factors for concrete[C]//Twentyeighth DDESB Seminar.Orlando: DDESB,1998. [15] 龚顺风, 邓欢, 朱升波, 等. 近爆作用下钢筋混凝土板动态破坏的数值模拟研究[J]. 振动与冲击, 2012, 31(2):20-24. -

计量
- 文章访问数: 23
- HTML全文浏览量: 4
- PDF下载量: 0
- 被引次数: 0