Research on Dynamic Deformation of Nano-SiO2-Improved Cement-Soil Under Cyclic Loading and Its Microstructure Analysis
-
摘要: 运用GDS真/动三轴仪和PQ001型低磁场核磁共振分析仪探究纳米SiO2改良水泥土的动力特性及其内部孔隙变化。动力特性试验结果表明:水泥土的动应力-动应变曲线随纳米SiO2掺量增加先上移后下降,动变形模量-动应变曲线、同级荷载滞回曲线圈面积、阻尼比-动应变曲线随着纳米SiO2掺量增加先下降后上移,在纳米SiO2掺量为2.5%时,水泥土抵抗动荷载能力最强;孔结构分析得出纳米SiO2改良水泥土的内部孔隙结构得到改善,强度提高。推荐纳米SiO2最优掺量为2.5%。Abstract: The dynamic characteristics of nano-SiO2-improved cement-soil and the change of internal micro-pore structure of nano-SiO2-improved cement-soil were studied with the dynamic triaxial test apparatus of GDS and the nuclear magnetic resonance test apparatus PQ001.The dynamic triaxial test results showed that theσd-εd curve of cement-soil first rising and then decline with the increase of the nano-SiO2 content. The curve of the dynamic deformation modulus and dynamic strain, the area surrounding by the hysteresis curve under the same level load, and the curve for damping ratios and dynamic strain of cement-soil first decline and then rising with the increase of the nano-SiO2 content. When the nano-SiO2 content was 2.5%, the dynamic resistance of cement-soil was maximun. Micro structure analysis of cement-soil showed that the pore structure and strength of nano-SiO2-improved cement-soil were increased. The optimal nano-SiO2 content was 2.5%.
-
Key words:
- cement-soil /
- nano-SiO2 /
- dynamic characteristic test /
- micro structure analysis
-
[1] 陈鑫,张泽,李东庆.水泥土强度特性和损伤本构模型研究[J].湖南大学学报(自然科学版),2020,47(7):109-119. [2] 王寅泽,章丽莎,张金红.水泥土工程性能研究综述[J].低温建筑技术,2020,42(8):14-18,23. [3] SAHIN M R. Single and combined effects of nano-SiO2,nano-Al2O3 and nano-Fe2O3 powders on compressive strength and capillary permeability of cement mortar containing silica fume[J].Materials Science and Engineering A,2011,528:7012-7019. [4] KIM K M,HEO Y S, KANG S P,et al. Effect of sodium silicate-and ethyl silicate-based nano-silica on pore structure of cement composites[J].Cement and Concrete Composites, 2014,49:84-91. [5] CHOOBBASTI A J, VAFAEI A, KUTANAEI S S. Mechanical properties of sandy soil improved with cement and nano silica[J]. Open Engineering, 2015,5(1):97-103. [6] GHASABKOLAEI N, JANALIZADEH A, JAHANSHAHI M, et al. Physical and geotechnical properties of cement-treated clayey soil using silica nanoparticles:an experimental study[J]. The European Physical Journal Plus, 2016:131-134. [7] 王立峰,朱向荣.纳米水泥土试验分析.地基处理理论与实践[C]//第七届全国地基处理学术讨论会论文集.北京:中国水利水电出版社,2002:106-110. [8] 王立峰.纳米硅水泥土工程特性及本构模型研究[D].杭州:浙江大学,2003. [9] 朱向荣,王立峰,丁同福.纳米硅水泥土工程特性的试验研究[J].岩土工程技术, 2003(4):187-192. [10] 王文军,朱向荣,方鹏飞.纳米硅粉水泥土固化机理研究[J].浙江大学学报,2005,39(1):148-153. [11] 谢定义.土动力学[M].北京:高等教育出版社,2011:1-30. [12] 罗飞,赵淑萍,马巍,等.青藏冻结黏土滞回曲线形态特征的定量研究[J].岩石力学与工程学报,2013,32(1):208-215. [13] 陈珊珊,李然,俞捷,等.永磁低场核磁共振分析仪原理和应用[J].生命科学仪器,2009,7(8):49-53. [14] COATES G,肖立志,PRAMMER M.核磁共振测井原理与应用[M].孟繁萤,译.北京:石油工业出版社, 2007. [15] YAO Y B, LIU D M,CHE Y, et al. Petrophysical characterization of coals by low-field nuclear magnetic resonance (NMR)[J]. Fuel, 2009,89:1371-1380. [16] 周科平,李杰林,许玉娟,等.基于核磁共振技术的岩石孔隙结构特征测定[J].中南大学学报(自然科学版),2012,43(12):4796-4800. [17] 曹芙波,魏子洋,王晨霞,等.稻壳灰与偏高岭土掺料对再生混凝土性能的影响[J].工业建筑,2021,51(4):167-172. 期刊类型引用(6)
1. 曹园. 基于BP算法的装配式建筑钢结构表观病害检测. 太原学院学报(自然科学版). 2024(01): 7-12 . 百度学术
2. 董子铭,陈洪刚,孙承行,谢建斌,卿粼波. 基于改进YOLOv7的表面缺陷检测研究. 现代计算机. 2024(02): 26-32 . 百度学术
3. 张亚腾,黄俊. 基于YOLOv7的钢表面缺陷检测. 激光杂志. 2024(03): 87-93 . 百度学术
4. 陈科技,李先哲,黄铭枫,王彦博,楼文娟,卞荣. 基于图像识别与有限元分析的输电塔杆件损伤评估. 工业建筑. 2024(11): 1-8 . 本站查看
5. 杜彬,刘福建,任伟彬,李阳. 基于超声相控阵的大型塔式起重机金属结构损伤检测方法. 中国新技术新产品. 2023(08): 18-20 . 百度学术
6. 王继荣. 引伸计在静态载荷下小尺寸钢桥面板模型的损伤或变化检测. 运输经理世界. 2022(36): 110-112 . 百度学术
其他类型引用(3)
-

计量
- 文章访问数: 154
- HTML全文浏览量: 21
- PDF下载量: 2
- 被引次数: 9