Peng Lingyun, Zhou Xiyuan, Yan Weiming, Han Wei, Ke Changhua. PERFORMANCE-BASED SEISMIC DESIGN FOR CRITICAL BUILDING——AN EXEMPLARY ANALYSIS[J]. INDUSTRIAL CONSTRUCTION, 2006, 36(9): 6-10.
Citation:
Peng Lingyun, Zhou Xiyuan, Yan Weiming, Han Wei, Ke Changhua. PERFORMANCE-BASED SEISMIC DESIGN FOR CRITICAL BUILDING——AN EXEMPLARY ANALYSIS[J]. INDUSTRIAL CONSTRUCTION , 2006, 36(9): 6-10.
Peng Lingyun, Zhou Xiyuan, Yan Weiming, Han Wei, Ke Changhua. PERFORMANCE-BASED SEISMIC DESIGN FOR CRITICAL BUILDING——AN EXEMPLARY ANALYSIS[J]. INDUSTRIAL CONSTRUCTION, 2006, 36(9): 6-10.
Citation:
Peng Lingyun, Zhou Xiyuan, Yan Weiming, Han Wei, Ke Changhua. PERFORMANCE-BASED SEISMIC DESIGN FOR CRITICAL BUILDING——AN EXEMPLARY ANALYSIS[J]. INDUSTRIAL CONSTRUCTION , 2006, 36(9): 6-10.
PERFORMANCE-BASED SEISMIC DESIGN FOR CRITICAL BUILDING——AN EXEMPLARY ANALYSIS
1.
1. Beijing Key Lab of Earthquake Engineering and Structure Retrofit,Beijing University of Technology Beijing 100022;
2.
2. Beijing Institute of Architecture Design Beijing 100045
Received Date: 2006-05-28
Publish Date:
2006-09-20
Abstract
For critical buildings, due to the special shape demands, the structural layouts often become irregular. On the other hand, because of the importance of their function, the seismic design criterion of these buildings is higher than normal ones. The designer of structure usually encounters difficulty and challenge in the seismic design. Two approaches to improve the seismic performance of buildings were presented: One is to reallocate the bending stiffness of the local structural members in order to make the distribution of structural stiffness uniform inherently though the appearance is irregular. The other is to add some oil dampers to buildings, which may provide additional damping for structures. The analysis results indicated that the structural seismic performance could be obviously enhanced due to adoption of above approaches, and the sections of structural members ( column, beam) could be reduced, and then to get better cost performance.
References
GB 50011-2001 建筑抗震设计规范
[2] Soong T T, Dargush G F. Passive Energy Dissipation Systems inStructural Engineering. New York: Wiley Sons, 1997
[3] 周锡元, 闫维明, 杨润林. 建筑结构的隔震、减震和振动控制. 建筑结构学报, 2002, 23(2): 2-13
[4] 周锡元. 抗震性能设计与三水准设防. 土木水利, 2003, 30(5): 21-32
[5] 李, 程耿东. 基于性能的结构抗震设计理论、方法与应用. 北京: 科学出版社, 2004
[6] Anil K Chopra. Estimating Seismic Demands for Performance-BasedEngineering of BuildingsPP13th World Conf erence on EarthquakeEngineering. Canada: 2004: 5007
[7] CSI Analysis Ref erence Manual for SAP 20001 Comput ers and St ructures.California: Inc. Berkeley, 2004: 209
Relative Articles
[1] LUO Daming, LI Fan, NIU Ditao. Life Prediction of Internal Curing Concrete in Chloride Environment Based on Nernst-Plank Equation [J]. INDUSTRIAL CONSTRUCTION, 2022, 52(10): 131-138. doi: 10.13204/j.gyjzG22073005
[2] ZHOU Xingyu, ZHOU Ji, CHEN Zongping. Stress-strain Constitutive Relation and Residual Strength Evaluation of Concrete After Being Subjected to High Temperatures and Spray Cooling [J]. INDUSTRIAL CONSTRUCTION, 2022, 52(1): 194-199,173. doi: 10.13204/j.gyjzG21042709
[3] SHEN Caihua, CHEN Wei, CHEN Xiaofeng, XIE Fei, LYU Shiming, XU Xiuliang. Chloride Diffusion Model and Diffusion Law Analysis of Concrete Based on GEM Equation [J]. INDUSTRIAL CONSTRUCTION, 2022, 52(7): 151-158. doi: 10.13204/j.gyjzG20122608
[6] Xu Na, Fu Xueyi. RESEARCH OF SPRING RIGIDITY COEFFICIENT EQUATION FITTING FOR RECTANGULAR STEEL TUBE COLUMN AND CONCRETE [J]. INDUSTRIAL CONSTRUCTION, 2012, 42(7): 134-141. doi: 10.13204/j.gyjz201207023
[7] Yang Min, Gao Gonglue. TEST OF FOUNDATION REINFORCEMENT OF OPERATIONAL SUBSTATION BY DEVELOPING SMALL-SCALE PILE DRIVER [J]. INDUSTRIAL CONSTRUCTION, 2010, 40(7): 118-122. doi: 10.13204/j.gyjz201007029
[8] Wu Ruiqian, Xie Kanghe, Shen Jianming. ANALYTICAL SOLUTIONS OF ONE-DIMENSIONAL THERMAL CONSOLIDATION OF SATURATED SOIL UNDER PERIODIC FLUCTUATION OF SURFACE TEMPERATURE [J]. INDUSTRIAL CONSTRUCTION, 2010, 40(8): 86-90. doi: 10.13204/j.gyjz201008020
[9] Qi Feng, Dang Gaihong, Chen Zhonggou. STUDY ON DAMAGE DEVELOPMENT EQUATION OF STEEL FIBER CONCRETE UNDER SPLITTING LOAD [J]. INDUSTRIAL CONSTRUCTION, 2009, 39(6): 92-95,78. doi: 10.13204/j.gyjz200906022
[10] Cao Ming, Chen Longzhu, Chen Shengli, Zheng Jianguo. AN INTEGRAL EQUATION APPROACH AND PARAMETRIC ANALYSIS OF A FOUNDATION WITH LONG-SHORT-PILE [J]. INDUSTRIAL CONSTRUCTION, 2007, 37(5): 48-52. doi: 10.13204/j.gyjz200705013
[11] Mei Fu-liang. INCREMENT-DIMENSIONAL PRECISE INTEGRATION METHOD OF SOLVING CONSOLIDATION EQUATION FOR SATURATION SOIL [J]. INDUSTRIAL CONSTRUCTION, 2006, 36(4): 50-51. doi: 10.13204/j.gyjz200604015
Proportional views
Created with Highcharts 5.0.7 Amount of access Chart context menu Abstract Views, HTML Views, PDF Downloads Statistics Abstract Views HTML Views PDF Downloads 2024-02 2024-03 2024-04 2024-05 2024-06 2024-07 2024-08 2024-09 2024-10 2024-11 2024-12 2025-01 0 2 4 6 8
Created with Highcharts 5.0.7 Chart context menu Access Class Distribution FULLTEXT : 12.7 % FULLTEXT : 12.7 % META : 87.3 % META : 87.3 % FULLTEXT META
Created with Highcharts 5.0.7 Chart context menu Access Area Distribution 其他 : 2.5 % 其他 : 2.5 % 上海 : 1.3 % 上海 : 1.3 % 乌鲁木齐 : 1.3 % 乌鲁木齐 : 1.3 % 北京 : 13.9 % 北京 : 13.9 % 广州 : 3.8 % 广州 : 3.8 % 张家口 : 1.3 % 张家口 : 1.3 % 温州 : 1.3 % 温州 : 1.3 % 漯河 : 1.3 % 漯河 : 1.3 % 芒廷维尤 : 54.4 % 芒廷维尤 : 54.4 % 芝加哥 : 2.5 % 芝加哥 : 2.5 % 西宁 : 16.5 % 西宁 : 16.5 % 其他 上海 乌鲁木齐 北京 广州 张家口 温州 漯河 芒廷维尤 芝加哥 西宁