| Citation: | XU Yang, HU Shudong, YANG Guangshuo, BAO Yuequan, LI Hui. A Generalized Vision-Based Intelligent Agent Navigation for Structural Damage Inspection[J]. INDUSTRIAL CONSTRUCTION, 2025, 55(7): 1-10. doi: 10.3724/j.gyjzG25070801 |
| [1] |
鲍跃全,李惠. 人工智能时代的土木工程[J]. 土木工程学报,2019,52(5):1-11.
|
| [2] |
SPENCER Jr B F,HOSKERE V,NARAZAKI Y. Advances in computer vision-based civil infrastructure inspection and monitoring[J]. Engineering,2019,5(2):199-222.
|
| [3] |
SUN L M,SHANG Z,XIA Y,et al. Review of bridge structural health monitoring aided by big data and artificial intelligence:from condition assessment to damage detection[J]. Journal of Structural Engineering,2020,146(5),04020073.
|
| [4] |
BAO Y Q,LI H. Machine learning paradigm for structural health monitoring[J]. Structural Health Monitoring,2021,20(4):1353-1372.
|
| [5] |
徐阳,金晓威,李惠. 土木工程智能科学与技术研究现状及展望[J]. 建筑结构学报,2022,43(9):23-35.
|
| [6] |
XU Y,QIAN W L,LI N,et al. Typical advances of artificial intelligence in civil engineering[J]. Advances in Structural Engineering,2022,25(16):3405-3424.
|
| [7] |
XU Y,WEI S Y,BAO Y Q,et al. Automatic seismic damage identification of reinforced concrete columns from images by a region-based deep convolutional neural network[J]. Structural Control and Health Monitoring,2019,26(3),e2313.
|
| [8] |
丁威,俞珂,舒江鹏. 基于深度学习和无人机的混凝土结构裂缝检测方法[J]. 土木工程学报,2021,54(增刊1):1-12.
|
| [9] |
岳清瑞,徐刚,刘晓刚. 桥梁裂缝智能识别与监测方法研究[J]. 中国公路学报,2024,37(2):16-28.
|
| [10] |
PRASANNA P,DANA K J,GUCUNSKI N,et al. Automated crack detection on concrete bridges[J]. IEEE Transactions on Automation Science and Engineering,2014,13(2):591-599.
|
| [11] |
LI Y,LI H,WANG H. Pixel-wise crack detection using deep local pattern predictor for robot application[J]. Sensors,2018,18(9),3042.
|
| [12] |
KOUZEHGAR M,TAMILSELVAM Y K,HEREDIA M V,et al. Self-reconfigurable façade-cleaning robot equipped with deep-learning-based crack detection based on convolutional neural networks[J]. Automation in Construction,2019,108,102959.
|
| [13] |
JIANG S,ZHANG J. Real-time crack assessment using deep neural networks with wall-climbing unmanned aerial system[J]. Computer-Aided Civil and Infrastructure Engineering,2020,35(6):549-564.
|
| [14] |
JANG K,AN Y K,KIM B,et al. Automated crack evaluation of a high-rise bridge pier using a ring-type climbing robot[J]. Computer-Aided Civil and Infrastructure Engineering,2021,36(1):14-29.
|
| [15] |
XU Y,FAN Y L,BAO Y Q,et al. Task-aware meta-learning paradigm for universal structural damage segmentation using limited images[J]. Engineering Structures,2023,284,115917.
|
| [16] |
POTENZA F,RINALDI C,OTTAVIANO E,et al. A robotics and computer-aided procedure for defect evaluation in bridge inspection[J]. Journal of Civil Structural Health Monitoring,2020,10(3):471-484.
|
| [17] |
RAMALINGAM B,HAYAT A A,ELARA M R,et al. Deep learning-based pavement inspection using self-reconfigurable robot[J]. Sensors,2021,21(8),2595.
|
| [18] |
YUAN C,XIONG B,LI X,et al. A novel intelligent inspection robot with deep stereo vision for three-dimensional concrete damage detection and quantification[J]. Structural Health Monitoring,2022,21(3):788-802.
|
| [19] |
MENG S,GAO Z,ZHOU Y,et al. Real-time automatic crack detection method based on drone[J]. Computer-Aided Civil and Infrastructure Engineering,2023,38(7):849-872.
|
| [20] |
XU Y,FAN Y L,LI H. Lightweight semantic segmentation of complex structural damage recognition for actual bridges[J]. Structural Health Monitoring,2023,22(5):3250-3269.
|
| [21] |
HOSKERE V,NARAZAKI Y,SPENCER Jr B F. Physics-based graphics models in 3D synthetic environments as autonomous vision-based inspection testbeds[J]. Sensors,2022,22(2),532.
|
| [22] |
XU Y,QIAO W D,ZHAO J,et al. Vision-based multi-level synthetical evaluation of seismic damage for RC structural components:a multi-task learning approach[J]. Earthquake Engineering and Engineering Vibration,2023,22(1):69-85.
|
| [23] |
胡澍东. 扫描式结构损伤检测机器人深度强化学习视觉导航方法[D]. 哈尔滨:哈尔滨工业大学,2023.
|