Source Journal of Chinese Scientific and Technical Papers
Included as T2 Level in the High-Quality Science and Technology Journals in the Field of Architectural Science
Core Journal of RCCSE
Included in the CAS Content Collection
Included in the JST China
Indexed in World Journal Clout Index (WJCI) Report
Volume 55 Issue 7
Jul.  2025
Turn off MathJax
Article Contents
MA Shaoqing, ZHANG Yu, ZHONG Wenhua, LIU Qiang, ZHOU Tianbao, SUN Tian. Research on the Cooling Performance of Thermosyphon-Ventilated Plate Composite Subgrade in Permafrost Regions[J]. INDUSTRIAL CONSTRUCTION, 2025, 55(7): 96-102. doi: 10.3724/j.gyjzG25051304
Citation: MA Shaoqing, ZHANG Yu, ZHONG Wenhua, LIU Qiang, ZHOU Tianbao, SUN Tian. Research on the Cooling Performance of Thermosyphon-Ventilated Plate Composite Subgrade in Permafrost Regions[J]. INDUSTRIAL CONSTRUCTION, 2025, 55(7): 96-102. doi: 10.3724/j.gyjzG25051304

Research on the Cooling Performance of Thermosyphon-Ventilated Plate Composite Subgrade in Permafrost Regions

doi: 10.3724/j.gyjzG25051304
  • Received Date: 2025-05-13
    Available Online: 2025-09-12
  • To investigate the cooling performance of thermosyphon-ventilated plate composite subgrade in permafrost regions, field experiments were conducted on a highway section between the 109 Junction at Erdaogou Military Station and Zhiduo along the S224 Line in Qinghai Province. The research reveals that the composite structure achieves three-dimensional optimization of the subgrade temperature field by establishing a tri-integrated regulation mode of "active cooling guidance - passive heat dissipation - cooling energy reserve". Based on the field-monitored temperature data and ground temperature measurements, this study analyzed the cooling performance of both the thermosyphon-ventilated plate composite subgrade and the ventilated plate subgrade. The research findings indicated that the composite subgrade, through a synergistic mechanism of "thermosyphon phase-change cooling + ventilated plate-enhanced heat dissipation", extended the heat transfer influence depth to -6 m during the cold season, forming a core cooling reserve layer spanning 2 to 6 meters in depth with a cooling energy reserve of 5220 J/kg, representing a 35.5% increase compared to the ventilated plate subgrade alone. Moreover, monitoring data revealed that the composite subgrade stabilized the permafrost table at a distance of 2.0 to 2.5 meters from the road surface, representing a 0.5 m uplift compared to the ventilated plate subgrade alone. The thermosyphon system maintained continuous operation for 215 days during the cold season. This study proposes a novel technical solution utilizing the synergistic effect of "thermosyphon phase-change cooling + ventilated plate-enhanced heat dissipation" for highway construction in discontinuous and continuous permafrost regions (particularly ice-rich and ice-saturated frozen soil areas) where the annual average ground temperature on the Qinghai-Tibet Plateau is ≤ -1 ℃.
  • loading
  • [1]
    高峰,曾宪璋,钟闻华,等. 多年冻土区道路工程病害处治技术研究进展与展望[J]. 中外公路,2024,44(5):1-16.
    [2]
    史健宗,南卓铜,石伟,等. 青藏高原多年冻土本底调查信息系统[J]. 遥感技术与应用,2010,25(5):725-732.
    [3]
    武憼民,汪双杰,章金钊. 多年冻土地区公路工程[M]. 北京:人民交通出版社,2005.
    [4]
    全球变暖将导致青藏高原北缘暖湿化[J]. 今日科技,2024(5):57.
    [5]
    吴晓东,吴通华. 多年冻土退化对气候和人类产生重要影响[J]. 自然杂志,2020,42(5):425-431.
    [6]
    安晓冬. 深季节冻土区路基保温措施的应用研究[D]. 石家庄:石家庄铁道大学,2016.
    [7]
    MU YH,MA W,YANG Z H,et al. Field observations of near-surface wind flow across expressway embankment on the Qinghai-Tibet Plateau[J]. Engineering,2022,14(7):169-180.
    [8]
    ZHOU W T,MA T,YIN X F,et al. Dramatic carbon loss in a permafrost thaw slump in the Tibetan Plateau is dominated by the loss of microbial necromass carbon[J]. Environmental Science& Technology,2023,57(17):6761-7102.
    [9]
    LIU M,NIU F,LUO J,et al. Performance,applicability,and optimization of a new slope cooling and protection structure for road embankment over warm permafrost[J]. International Journal of Heat and Mass Transfer,2020,162,120388.
    [10]
    景晶晶,吴志坚,丁万鹏,等. 基于探地雷达测量的青藏公路多年冻土区热棒路基降温效果分析[J]. 冰川冻土,2024,46(6):1728-1740.
    [11]
    刘金修,李泽,李钰,等. 多年冻土区热棒路基降温调控效能研究[J]. 公路,2021,66(2):20-27.
    [12]
    何宗杭. 青藏高原多年冻土区宽幅通风管路基降温技术研究[D]. 成都:四川农业大学,2021.
    [13]
    张会建,袁堃,董元宏,等. 多年冻土区宽幅XPS保温板路基传热特征研究[J]. 路基工程,2019(6):6-12.
    [14]
    王青志,房建宏,徐安花,等. 高温不稳定多年冻土区片块石路基热状态变化分析[J]. 公路工程,2019,44(6):66-70.
    [15]
    程国勇,马少敏,杨依恒. 多年冻土区机场跑道L型热管+保温板温控技术[J]. 中国民航大学学报,2022,40(3):23-29.
    [16]
    李越,孙红,葛修润,等. 路基宽度对多年冻土区透壁式通风管-块石复合路基降温效应的影响[J]. 公路交通科技,2019,36(4):28-35.
    [17]
    刘娟. 青藏铁路楚玛尔河地区复合路基地温状况分析[J]. 铁道标准设计,2013(12):40-42,46.
    [18]
    郭宏新,马巍,熊治文. 热棒工程[M]. 北京:人民交通出版社股份有限公司,2016.
    [19]
    孔森,温智,吴青柏,等. 热管在青藏高原多年冻土区高速公路应用中的适用性评价[J]. 中南大学学报(自然科学版),2019,50(6):1384-1391.
    [20]
    杨科. 多年冻土路基温度场变化及数值模拟[J]. 中国科技信息,2022(14):81-83.
    [21]
    沈世鑫. 多年冻土地区的公路路基温度场研究[J]. 公路工程,2019,44(3):246-252.
    [22]
    李永强. 青藏铁路多年冻土区热棒路基的设计计算[J]. 铁道工程学报,2007(11):32-36.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (63) PDF downloads(4) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return