Source Journal of Chinese Scientific and Technical Papers
Included as T2 Level in the High-Quality Science and Technology Journals in the Field of Architectural Science
Core Journal of RCCSE
Included in the CAS Content Collection
Included in the JST China
Indexed in World Journal Clout Index (WJCI) Report
Volume 55 Issue 12
Dec.  2025
Turn off MathJax
Article Contents
LU Zheng, YAN Deyu, JIANG Huanjun, LI Jiangyuan. Research on Cascading Failure of Earthquake-Induced Secondary Disasters in Urban Engineering Systems Based on Scenario Simulation[J]. INDUSTRIAL CONSTRUCTION, 2025, 55(12): 27-37. doi: 10.3724/j.gyjzG25042702
Citation: LU Zheng, YAN Deyu, JIANG Huanjun, LI Jiangyuan. Research on Cascading Failure of Earthquake-Induced Secondary Disasters in Urban Engineering Systems Based on Scenario Simulation[J]. INDUSTRIAL CONSTRUCTION, 2025, 55(12): 27-37. doi: 10.3724/j.gyjzG25042702

Research on Cascading Failure of Earthquake-Induced Secondary Disasters in Urban Engineering Systems Based on Scenario Simulation

doi: 10.3724/j.gyjzG25042702
  • Received Date: 2025-04-27
    Available Online: 2026-01-06
  • Publish Date: 2025-12-20
  • This study comprehensively considers the functional and geographical interdependencies among hazard-bearing bodies and employs a scenario simulation approach to establish a cascading failure model applicable to urban engineering systems. A case study is conducted in the research area to reveal the propagation of post-earthquake secondary disasters and the evolutionary process of cascading failures. The results demonstrate that the various infrastructure networks within urban engineering systems exhibit a high degree of interdependence, significantly amplifying the spatial extent of disaster consequences. In the post-earthquake evolutionary scenarios, even with initially minor damage levels, the severity of infrastructure deterioration can markedly worsen over time under conditions of strong interdependency. During the propagation and diffusion phase of secondary disasters, different hazard-bearing bodies display varying levels of vulnerability. For instance, facilities such as schools and gas stations are more susceptible to disaster impacts, which necessitates the formulation of preemptive defense and response plans for these entities. Key nodes in networks exhibit significant temporal evolution characteristics. Based on the temporal analysis results, network nodes can be categorized into three types: early-dominant, mid-term explosive, and late-sensitive. Targeted measures can then be implemented to block disaster propagation accordingly.
  • loading
  • [1]
    RUS K,KILAR V,KOREN D. Resilience assessment of complex urban systems to natural disasters:a new literature review[J]. International Journal of Disaster Risk Reduction,2018,31:311-330.
    [2]
    XIAO Y H,ZHAO X D,WU Y P,et al. Seismic resilience assessment of urban interdependent lifeline networks[J]. Reliability Engineering& System Safety,2021,218,108164.
    [3]
    刘昭阁,李向阳,乔立民,等. 多源数据环境下城市暴雨级联事件风险评估的迁移学习方法[J/OL]. 系统工程理论与实践,2024[2024-12-30]. http://kns.cnki.net/kcms/detail/11.2267.n.20241210.1002.002.html.
    [4]
    LAU D L,TANG A,PIERRE J R. Performance of lifelines during the 1994 Northridge earthquake[J]. Canadian Journal of Civil Engineering,1995,22(2):438-451.
    [5]
    YUZBASI J. Post-earthquake damage assessment:field observations and recent developments with recommendations from the Kahramanmaraş Earthquakes in Türkiye on February 6th,2023(Pazarcık M7.8 and Elbistan M7.6)[J]. Journal of Earthquake Engineering,2024,2353864.
    [6]
    TOPRAK S,ZULFIKAR A C,MUTLU A. The aftermath of 2023 Kahramanmaras earthquakes:evaluation of strong motion data,geotechnical,building,and infrastructure issues[J]. Natural Hazards,2025,121(2):2155-2192.
    [7]
    仪垂祥,史培军. 熵产生和自然灾害[J]. 北京师范大学学报(自然科学版),1994(2):276-280.
    [8]
    郭明雪,赵婷婷,高自友. 韧性背景下道路交通网络保护和修复优化方法综述[J]. 系统工程理论与实践,2024,44(11):3626-3638.
    [9]
    王倩雯,田健,曾坚,等. 基于情景模拟的闽三角城市群承洪适灾网络构建及规划响应策略[J]. 水利学报,2022,53(7):876-889.
    [10]
    苏鑫,邵薇薇,刘家宏,等. 基于情景模拟的洪涝灾害经济损失动态评估[J]. 清华大学学报(自然科学版),2022,62(10):1606-1617.
    [11]
    GILL J C,MALAMUD B D. Hazard interactions and interaction networks(cascades)within multi-hazard methodologies[J]. Earth System Dynamics,2016,7(3):659-679.
    [12]
    BULDYREV S V,PARSHANI R,PAUL G. Catastrophic cascade of failures in interdependent networks[J]. Nature,2010,464:1025-1028.
    [13]
    QIE Z J,RONG L L. A scenario modelling method for regional cascading disaster risk to support emergency decision making[J]. International Journal of Disaster Risk Reduction,2022,77,103102.
    [14]
    刘昭阁,李向阳,朱晓寒. 城市关键基础设施网络脆弱性关联分析的知识本体配置[J]. 系统工程理论与实践,2023,43(1):222-233.
    [15]
    LI J J,LIU G F,WANG H M. Capturing cascading effects under urban flooding:a new framework in the lens of heterogeneity[J]. Journal of Hydrology,2023,626,130249.
    [16]
    荣莉莉,王铮. 基于承灾体的灾害后果演化模型研究[J]. 系统工程理论与实践,2016,36(8):2068-2077.
    [17]
    ZHOU F,YUAN Y B,ZHANG M Y. Robustness analysis of interdependent urban critical infrastructure networks against cascade failures[J]. Arabian Journal for Science and Engineering,2019,44(3):2837-2851.
    [18]
    XIE X L,TIAN Y Z,WEI G. Deduction of sudden rainstorm scenarios:integrating decision makers' emotions,dynamic Bayesian network and DS evidence theory[J]. Natural Hazards,2022,116(3):2935-2955.
    [19]
    RINALDI S M,PEERENBOOM J P,KELLY T K. Identifying,understanding,and analyzing critical infrastructure interdependencies[J]. IEEE Control Systems,2001,21(6):11-25.
    [20]
    ZIMMERMAN R. Social implications of infrastructure network interactions[J]. Journal of Urban Technology,2001,8(3):97-119.
    [21]
    DUDENHOEFFER D D,PERMANN M R,MANIC M. CIMS:a framework for infrastructure independency modeling and analysis[C]// Proceedings of the IEEE 2006 Winter Simulation Conference. Monterey,CA:2006:478-485.
    [22]
    KAWASHIMA K,AIZAWA K,TAKAHASHI K. Attenuation of peak ground acceleration,velocity and displacement based on multiple-regression analysis of Japanese Strong Motion Records[J]. Earthquake Engineering& Structural Dynamics,1986,14(2):199-215.
    [23]
    住房和城乡建设部标准定额研究所. 城市工程系统抗震韧性评价导则:RI SN-TG041—2022[S]. 北京:中国建筑工业出版社,2022.
    [24]
    陈敏. 关键基础设施系统中台风灾害链的复杂网络建模研究[D]. 武汉:武汉大学,2020.
    [25]
    成路肖. 基于多源数据的城市人口高精度制图及其与基础设施的关联分析[D]. 武汉:中国地质大学,2022.
    [26]
    STEELE J E,NIEVES J,TATEM A J,et al. Worldpop:fusion of earth and big data for intraurban population mapping[C]// 2018 IEEE International Geoscience and Remote Sensing Symposium. Valencia:2018:2070-2071.
    [27]
    曹一家,陈彦如,曹丽华,等. 复杂系统理论在电力系统中的应用研究展望[J]. 中国电机工程学报,2012,32(19):1-9.
    [28]
    谢琼瑶,邓长虹,赵红生,等. 基于有权网络模型的电力网节点重要度评估[J]. 电力系统自动化,2009,33(4):21-24.
    [29]
    MASUDA N,MIWA H,KONNO N,Geographical threshold graphs with small-world and scale-free properties[J]. Physical Review,2005,71(3),036108.
    [30]
    HERNANDEZ-FAJARDO I,DUEÑAS-OSORIO L. Probabilistic study of cascading failures in complex interdependent lifeline systems[J]. Reliability Engineering and System Safety,2013,111:260-272.
    [31]
    LI Y,ZHANG M Y. Cascading failure analysis of interdependent water-power networks based on functional coupling[J]. Reliability Engineering and System Safety,2025,259,110950.
    [32]
    WANG F,MAGOUA J J,LI N. Modeling cascading failure of interdependent critical infrastructure systems using HLA-based co-simulation[J]. Automation in Construction,2022,133,104008.
    [33]
    袁一凡. 四川汶川8.0级地震损失评估[J]. 地震工程与工程振动,2008(5):10

    -19.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (20) PDF downloads(0) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return