| Citation: | ZHAO Yanru, GUAN He, WANG Xiaoyong, SHI Jinna. Study on Carbon Absorption Capacity and Pore Structure Evolution of Concrete Under Bending Load[J]. INDUSTRIAL CONSTRUCTION, 2025, 55(5): 292-301. doi: 10.3724/j.gyjzG24122004 |
| [1] |
巴明芳,张丹蕾,赵启俊,等. 碳化与氯盐复合作用下硫氧镁胶凝材料的护筋性[J]. 建筑材料学报,2021,24(5):946-951.
|
| [2] |
李晓珍,柳俊哲,闫加利,等. 碳化与氯盐对混凝土孔溶液中钢筋钝化的影响[J]. 建筑材料学报,2020,23(1):224-229.
|
| [3] |
SHI C J,LI Y K,ZHANG J K,et al. Performance enhancement of recycled concrete aggregate:a review[J]. Journal of Cleaner Production,2016,112:466-472.
|
| [4] |
ZHANG D,GHOULEH Z,SHAO Y X,Review on carbonation curing of cement-based materials[J]. Journal of CO2 Utilization,2017,21:119-131.
|
| [5] |
ASHRAF W. Carbonation of cement-based materials:challenges and opportunities[J]. Construction and Building Materials,2016,120:558-570.
|
| [6] |
唐官保,姚燕,王玲,等. 应力作用下混凝土碳化深度预测模型[J]. 建筑材料学报,2020,23(2):304-308.
|
| [7] |
金祖权,孙伟,张云升,等. 荷载作用下混凝土的碳化深度[J]. 建筑材料学报,2005,8(2):179-183.
|
| [8] |
李轲楠. 服役混凝土抗渗透性与抗碳化性的研究[D]. 南昌:南昌大学,2012.
|
| [9] |
涂永明,吕志涛. 应力状态下混凝土的碳化试验研究[J]. 东南大学学报(自然科学版),2003(5):573-576.
|
| [10] |
万小梅. 力学荷载及环境复合因素作用下混凝土结构劣化机理研究[D]. 西安:西安建筑科技大学,2011.
|
| [11] |
张云升,孙伟,陈树东,等. 弯拉应力作用下粉煤灰混凝土的1D和2D碳化[J]. 东南大学学报(自然科学版),2007(1):118
-122.
|
| [12] |
迟培云,梁永峰,于素健. 提高混凝土耐久性的技术途径[J]. 混凝土,2001(8):12-15.
|
| [13] |
DOERR B A. Chemical changes in concrete due to the ingress of aggressive species[J]. Cement and Concrete Research,2000,30(3):411-418.
|
| [14] |
GLASSER F P,MARCHAND J,SAMSON E. Durability of concrete-degradation phenomena involving detrimental chemical reactions[J]. Cement& Concrete Research,2008,38(2):226-246.
|
| [15] |
张平,王曙光,韩建德,等. 静力荷载作用下混凝土抗碳化性能及微观结构演化[J]. 混凝土,2017(10):45-51.
|
| [16] |
黄浩. 基于水化惰性胶凝材料的CO2矿化养护建材机制研究[D]. 杭州:浙江大学,2019.
|
| [17] |
钱觉时,别安涛,李昕成. 水泥混凝土中MgO来源与作用的研究进展[J]. 材料导报,2010,24(11):128-131.
|
| [18] |
SEONHYEOK K,JOONHO S,YOON H N,et al. Exploration of effects of CO2 exposure on the NOx-removal performance of TiO2-incorporated Portland cement evaluated via microstructural and morphological investigation[J]. Journal of Building Engineering,2022,45,103609.
|
| [19] |
CARLOS M,VITO F,MIRIAN V L. Modification of CO2 capture and pore structure of hardened cement paste made with nano-TiO2 addition:Influence of water-to-cement ratio and CO2 exposure age[J]. Construction and Building Materials,2021,275,122131.
|
| [20] |
韩建德,潘钢华,孙伟,等. 荷载与碳化耦合因素作用下混凝土的耐久性研究进展[J]. 材料导报,2011,25(增刊1):467-469,473.
|
| [21] |
SUN M,ZOU C Y,XIN D B. Pore structure evolution mechanism of cement mortar containing diatomite subjected to freeze-thaw cycles by multifractal analysis[J]. Cement and Concrete Composites,2020,114,103731.
|
| [22] |
赵燕茹,刘明,王磊,等. 碳化高温后普通混凝土抗压强度及孔结构演化规律[J]. 材料导报,2022,36(19):110-117.
|
| [23] |
苗连娟. 混凝土微观孔结构与双重孔隙介质渗透率模型[D]. 哈尔滨:哈尔滨工业大学,2019.
|
| [24] |
张丰,莫立武,邓敏,等. 碳化对钢渣-水泥-CaO-MgO砂浆强度和微观结构的影响[J]. 建筑材料学报,2017,20(6):854-861.
|
| [25] |
黄毓,逯静洲,王建伟,等. 轴压荷载作用下混凝土碳化特性试验研究[J]. 混凝土,2022(5):65-68.
|
| [26] |
SILVA D A,JOHN V M,RIBEIRO J L D,et al. Pore size distribution of hydrated cement pastes modified with polymers[J]. Cement and Concrete Research,2001,31(8):1177-1184.
|
| [27] |
牛建刚,牛荻涛,刘万里. 弯曲荷载影响粉煤灰混凝土碳化规律的研究[J]. 硅酸盐通报,2011,30(1):140-146.
|
| [28] |
杜栋,庞庆华. 现代综合评价方法与案列精选[M]. 北京:清华大学出版社,2005.
|