Source Journal of Chinese Scientific and Technical Papers
Included as T2 Level in the High-Quality Science and Technology Journals in the Field of Architectural Science
Core Journal of RCCSE
Included in the CAS Content Collection
Included in the JST China
Indexed in World Journal Clout Index (WJCI) Report
ZHONG Ziqin, ZHAO Shixing, XIA Jing, ZHOU Qiaoling, YANG Shuheng, HE Fei, YAO Yu. Mechanical Parameter Regression Models of Bamboo Scrimber Based on Parametric Statistical Method[J]. INDUSTRIAL CONSTRUCTION, 2025, 55(2): 20-30. doi: 10.3724/j.gyjzG24102102
Citation: ZHONG Ziqin, ZHAO Shixing, XIA Jing, ZHOU Qiaoling, YANG Shuheng, HE Fei, YAO Yu. Mechanical Parameter Regression Models of Bamboo Scrimber Based on Parametric Statistical Method[J]. INDUSTRIAL CONSTRUCTION, 2025, 55(2): 20-30. doi: 10.3724/j.gyjzG24102102

Mechanical Parameter Regression Models of Bamboo Scrimber Based on Parametric Statistical Method

doi: 10.3724/j.gyjzG24102102
  • Received Date: 2024-10-21
    Available Online: 2025-04-02
  • Investigating the population distribution of the mechanical parameters of bamboo scrimber, establishing regression models between the compressive strength parallel to grain and other mechanical parameters, and then providing a basis for the engineering application of bamboo scrimber. Data from 2 925 bamboo scrimber material tests was collected. Then the consistency of the sample data for each mechanical parameter of bamboo scrimber with normal, lognormal, Gumbel, Weibull, and Cauchy distribution was inferred using the Kolmogorov-Smirnov test. Finally, based on the optimal population distribution of each mechanical parameter, the regression models of the compressive strength of bamboo scrimber compressive strength parallel to grain with other mechanical parameters were established. The results showed that the mechanical parameters of bamboo scrimber obeyed the skewed distribution; the linear function and power function could fit the relations between the compressive strength parallel to grain and other mechanical parameters of bamboo scrimber well.
  • [1]
    国家林业和草原局, 国家公园管理局. 中国竹:资源最丰富 产业最宏大[N/OL]. (2022-11-08)[2024-08-13]. https://www.forestry.gov.cn/main/586/20221108/0932198653 84334.html.
    [2]
    赵仕兴, 周巧玲, 齐锦秋, 等. 重组竹结构的研究现状与工程应用[J]. 建筑结构, 2023, 53(7): 109-117.
    [3]
    徐齐云, 谷晓雨, 王正, 等. 瞬态激励法动态测试重组竹弹性模量、剪切模量和泊松比[J]. 林业工程学报, 2023, 8(5): 70-78.
    [4]
    吴文清, 宋晓东. 重组竹基本力学性能的试验分析与研究[J]. 武汉理工大学学报, 2017, 39(4): 46-51.
    [5]
    李权, 杨明杰, 陈林碧, 等. 工艺参数对竹重组材性能的影响[J]. 福建林学院学报, 2011, 31(2): 189-192.
    [6]
    左迎峰, 吴义强, 肖俊华, 等. 重组竹制备工艺对力学性能的影响[J]. 西南林业大学学报, 2016, 36(2): 132-136.
    [7]
    李泽, 何文, 强瀚, 等. 定向重组竹纤维素纤维/酚醛树脂复合材料的制备及其性能[J]. 复合材料学报, 2021, 38(10): 3209-3217.
    [8]
    张亚梅, 祝荣先, 余养伦, 等. 辊压树脂定向渗透工艺对竹束干燥及重组竹性能的影响[J]. 林业工程学报, 2022, 7(5): 44-49.
    [9]
    田心池, 于文吉, 马红霞, 等. 重组竹制备过程中温度场变化规律与预测模型[J]. 林业工程学报, 2023, 8(1): 38-45.
    [10]
    程亮, 王喜明, 余养伦. 浸胶工艺对绿竹重组竹材性能的影响[J]. 木材工业, 2009, 23(3): 16-19.
    [11]
    孟凡丹, 余养伦, 祝荣先, 等. 浸胶量对纤维化竹单板层积材物理力学性能的影响[J]. 木材工业, 2011, 25(2): 1-3

    ,7.
    [12]
    刘颖, 李昀彦, 杨喜, 等. 糠醇树脂改性对重组竹性能的影响研究[J]. 中南林业科技大学学报, 2020, 40(10): 160-168.
    [13]
    魏万姝, 覃道春. 不同竹龄慈竹重组材强度和天然耐久性比较[J]. 南京林业大学学报(自然科学版), 2011, 35(6): 111-115.
    [14]
    黄东升, 潘文平, 周爱萍, 等. 重组竹Ⅱ型断裂特性试验研究[J]. 东南大学学报(自然科学版), 2018, 48(6): 1076-1081.
    [15]
    ZHANG M, HUANG Y, FAN H D, et al. A method to calculate the load-carrying capacity of bolted steel-bamboo scrimber-steel connections[J]. Journal of Building Engineering, 2023, 72, 106743.
    [16]
    沈玉蓉, 卞玉玲, 周爱萍, 等. 重组竹压弯构件承载力非弹性分析方法[J]. 建筑结构学报, 2017, 38(8): 150-155.
    [17]
    LI H, WEI Y, YAN L, et al. Characterization of local compressive behavior for bamboo scrimber loaded perpendicular to the grain[J]. Construction and Building Materials, 2023, 397, 132421.
    [18]
    黄庚浪, 盛叶, 张峰, 等. 密度与含水率双因素作用下重组竹顺纹弹性模量的预测与分析[J]. 木材科学与技术, 2024, 38(2): 60-67.
    [19]
    盛叶, 黄庚浪, 叶小凡, 等. 密度和含水率对重组竹顺纹抗拉强度的影响[J]. 林业科学, 2024, 60(10): 116-121.
    [20]
    赵秀, 吕建雄, 江京辉. 落叶松规格材抗弯强度与抗拉强度的关系[J]. 木材工业, 2010, 24(4): 1-4.
    [21]
    何子奇, 钟紫勤, 周绪红, 等. 毛竹材强度数据统计与回归分析模型[J]. 建筑结构学报, 2023, 44(10): 123-132.
    [22]
    孙玲玲. 重组竹顺纹单轴应力-应变关系研究[D]. 南京: 南京林业大学, 2013.
    [23]
    魏洋, 王晓伟, 李国芬. 配筋重组竹受弯试件力学性能试验[J]. 复合材料学报, 2014, 31(4): 1030-1036.
    [24]
    周爱萍. 重组竹受弯构件试验研究与理论分析[D]. 南京: 南京林业大学, 2014.
    [25]
    柯勇涛. 结构用重组竹框架结构柱试验研究与分析[D]. 南京: 南京林业大学, 2014.
    [26]
    苏靖文, 吴繁, 李海涛, 等. 重组竹柱轴心受压试验研究[J]. 中国科技论文, 2015, 10(1): 39-41

    ,50.
    [27]
    张苏俊, 赵志高, 张文娟, 等. 重组竹柱轴心受压试验研究[J]. 施工技术, 2015, 44(24): 120-123.
    [28]
    吴培增. 重组竹蠕变性能试验与分析[D]. 哈尔滨: 东北林业大学, 2015.
    [29]
    包茜虹. 重组竹的应力-应变关系与强度准则[D]. 南京: 南京林业大学, 2015.
    [30]
    周爱萍, 黄东升, 唐思远, 等. 重组竹-钢填板螺栓节点承载力试验研究[J]. 南京工业大学学报(自然科学版), 2016, 38(5): 34-39,67.
    [31]
    张秀华, 鄂婧, 李玉顺, 等. 重组竹抗压和抗弯力学性能试验研究[J]. 工业建筑, 2016, 46(1): 7-12.
    [32]
    KUMAR A, VLACH T, LAIBLOVA L, et al. Engineered bamboo scrimber: influence of density on the mechanical and water absorption properties[J]. Construction and Building Materials, 2016, 127: 815-827.
    [33]
    WEI Y, JI X W, DUAN M J, et al. Flexural performance of bamboo scrimber beams strengthened with fiber-reinforced polymer[J]. Construction and Building Materials, 2017, 142: 66-82.
    [34]
    ZHONG Y, WU G F, REN H Q, et al. Bending properties evaluation of newly designed reinforced bamboo scrimber composite beams[J]. Construction and Building Materials, 2017, 143: 61-70.
    [35]
    XU M, CUI Z Y, CHEN Z F, et al. Experimental study on compressive and tensile properties of a bamboo scrimber at elevated temperatures[J]. Construction and Building Materials, 2017, 151: 732-741.
    [36]
    宋晓东. 新型重组竹-混凝土组合桥面板力学性能研究[D]. 南京: 东南大学, 2017.
    [37]
    孙达庆. 对角预应力拉索重组竹框架抗侧力性能研究[D]. 南京: 南京林业大学, 2017.
    [38]
    苏相宇. 三种截面形式重组竹柱轴心受力性能试验研究[D]. 扬州: 扬州大学, 2017.
    [39]
    肖忠平, 李晨, 苏相宇. 不同截面形式重组竹柱轴心受压试验研究[J]. 西北林学院学报, 2018, 33(5): 231-235.
    [40]
    魏洋, 纪雪微, 端茂军, 等. 重组竹轴向应力-应变关系模型[J]. 复合材料学报, 2018, 35(3): 572-579.
    [41]
    冷予冰, 陈溪, 许清风, 等. 重组竹和钢板加固胶合木梁柱节点抗侧性能研究[J]. 建筑结构, 2018, 48(10): 56-60

    ,35.
    [42]
    李频. 结构用重组竹受弯性能试验研究[D]. 长沙: 中南林业科技大学, 2018.
    [43]
    钟永. 结构用重组竹及其复合梁的力学性能研究[D]. 北京: 中国林业科学研究院, 2018.
    [44]
    李玉顺, 张秀华, 吴培增, 等. 重组竹在长期荷载作用下的蠕变行为[J]. 建筑材料学报, 2019, 22(1): 65-71.
    [45]
    崔兆彦, 徐明, 陈忠范, 等. 重组竹钢夹板螺栓连接承载力试验研究[J]. 工程力学, 2019, 36(1): 96-103

    ,118.
    [46]
    魏洋, 严少聪, 陈思, 等. FRP增强重组竹梁受弯性能数值模拟[J]. 复合材料学报, 2019, 36(4): 1036-1044.
    [47]
    盛叶, 孟成, 廖飞宇. 重组竹-铝板组合梁受弯性能试验研究[J]. 建筑结构学报, 2019, 40(增刊1): 308-315.
    [48]
    严少聪. 配筋重组竹受弯性能研究[D]. 南京: 南京林业大学, 2019.
    [49]
    孙丽惟, 卞玉玲, 周爱萍, 等. 重组竹短期蠕变性能研究[J]. 林业工程学报, 2020, 5(2): 69-75.
    [50]
    李频, 陈伯望. 结构用重组竹抗弯性能试验研究[J]. 建筑结构, 2020, 50(2): 117-121

    ,116.
    [51]
    冷予冰, 许清风, 龙卫国. 外包钢板和内贴重组竹增强胶合木梁柱节点的试验研究[J]. 建筑结构, 2020, 50(5): 7-14.
    [52]
    崔兆彦, 徐明, 陈忠范, 等. 重组竹材三面和四面受火炭化性能试验[J]. 哈尔滨工业大学学报, 2020, 52(2): 111-118.
    [53]
    LI H T, ZHANG H Z, QIU Z Y, et al. Mechanical properties and stress strain relationship models for bamboo scrimber[J]. Journal of Renewable Materials, 2020, 8(1): 13-27.
    [54]
    CHEN S, WEI Y, HU Y, et al. Behavior and strength of rectangular bamboo scrimber columns with shape and slenderness effects[J]. Materials Today Communications, 2020, 25, 101392.
    [55]
    WEI Y, TANG S F, JI X W, et al. Stress-strain behavior and model of bamboo scrimber under cyclic axial compression[J]. Engineering Structures, 2020, 209, 110279.
    [56]
    WEI Y, YAN S C, ZHAO K, et al. Experimental and theoretical investigation of steel-reinforced bamboo scrimber beams[J]. Engineering Structures, 2020, 223, 111179.
    [57]
    刘洪瑶. 重组竹筋水泥砂浆加固砖柱轴心受压性能试验研究[D]. 长沙: 中南林业科技大学, 2020.
    [58]
    杜瑞. 重组竹受压、受拉力学性能试验及其强度设计值可靠度研究[D]. 福州: 福建农林大学, 2020.
    [59]
    张俊文. 基于材料蠕变影响的重组竹梁蠕变性能研究[D]. 南京: 东南大学, 2020.
    [60]
    陈思, 魏洋, 赵鲲鹏, 等. 重组竹顺纹受压蠕变性能及预测模型[J]. 复合材料学报, 2021, 38(3): 944-952.
    [61]
    WANG X, ZHONG Y, LUO X Y, et al. Compressive failure mechanism of structural bamboo scrimber[J]. Polymers, 2021, 13(23), 4223.
    [62]
    CHEN S, WEI Y, PENG D L, et al. Experimental investigation of timber beams strengthened by bamboo scrimber with anchorage structure[J]. Structures, 2021, 33: 1-11.
    [63]
    LIU W, LIU M X, HUANG J K, et al. Constitutive relation models of bamboo scrimber under uniaxial loading along the fire direction[J]. European Journal of Wood and Wood Products, 2021, 79: 811-820.
    [64]
    LI H M, QIU H X, WANG Z Q, et al. Withdrawal resistance of the self-tapping screws in engineered bamboo scrimber[J]. Construction and Building Materials, 2021, 311, 125315.
    [65]
    WU M T, MEI L D, GUO N, et al. Mechanical properties and failure mechanisms of engineering bamboo scrimber[J]. Construction and Building Materials, 2022, 344, 128082.
    [66]
    任静. 内置钢筋增强重组竹梁受弯性能研究[D]. 哈尔滨: 东北林业大学, 2022.
    [67]
    贾汪颖. 重组竹工字形梁受弯及受剪性能研究[D]. 重庆: 重庆大学, 2022.
    [68]
    熊俊. 重组竹螺栓连接梁柱节点性能研究[D]. 重庆: 重庆大学, 2022.
    [69]
    邬明桃. 内置钢筋增强重组竹柱轴心受压性能研究[D]. 哈尔滨: 东北林业大学, 2022.
    [70]
    王明涛. 重组竹准静态和动态力学性能及破坏机理研究[D]. 太原: 中北大学, 2022.
    [71]
    CAO Q, WEI Y, LIN Y, et al. Experimental investigations on the bearing properties of bamboo scrimber joints by a bolted bamboo-steel-bamboo connection[J]. Wood Material Science & Engineering, 2023, 18(5): 1790-1808.
    [72]
    LIU H, WEI Y, HUANG L J, et al. Shear behaviour of I-shaped steel with bamboo scrimber composite beams[J]. Archives of Civil and Mechanical Engineering, 2023, 24(1): 1-14.
    [73]
    ZHOU S R, SHI L L, XIONG G, et al. Global buckling behaviour of bamboo scrimber box columns under axial compression: experimental tests and numerical modelling[J]. Journal of Building Engineering, 2023, 63, 105435.
    [74]
    WU F Y, WEI Y, LIN Y, et al. Experimental study of bamboo scrimber-filled steel tube columns under axial compression[J]. Engineering Structures, 2023, 280, 115669.
    [75]
    SHENG Y, TU D F, LIAO F Y, et al. Flexural behavior and design methodology for bamboo scrimber-aluminum plate composite beams[J]. Engineering Structures, 2023, 292, 116570.
    [76]
    CHEN S, WEI Y, ZHU J, et al. Experimental investigation of the shear performance of bamboo scrimber beams reinforced with bamboo pins[J]. Construction and Building Materials, 2023, 365, 130044.
    [77]
    刘曼. FRP-重组竹复合梁宏细观力学性能研究[D]. 长沙: 中南林业科技大学, 2023.
    [78]
    邸静. 重组竹板增强轻型木结构剪力墙抗侧性能研究[D]. 哈尔滨: 东北林业大学, 2023.
    [79]
    单奇峰, 童科挺, 丁静姝, 等. 张弦式钢-竹组合工字形梁的短期受弯性能[J]. 哈尔滨工业大学学报, 2024, 56(1): 93-102.
    [80]
    WEI B X, WEI Y, LIN Y, et al. Compressive performance of bamboo scrimber and concrete-filled steel tube columns[J]. Engineering Structures, 2024, 300, 117192.
    [81]
    LENG Y B, WANG M Q, XU Q F, et al. Experimental study on longitudinal embedding performance of bolted engineered bamboo connections[J]. Construction and Building Materials, 2024, 411, 134730.
    [82]
    SHENG Y, HUANG G L, PENG J H, et al. Experimental study on the impact resistance of bamboo scrimber beams under impact loading[J]. Construction and Building Materials, 2024, 413, 134826.
    [83]
    LIN Y Z, WANG C, SUN M, et al. Experimental evaluation and theoretical modeling of eco-friendly bamboo scrimber-UHPC members with enhanced shear connectors[J]. Journal of Cleaner Production, 2024, 450, 141920.
    [84]
    张俊珍, 任海青, 钟永, 等. 重组竹抗压与抗拉力学性能的分析[J]. 南京林业大学学报(自然科学版), 2012, 36(4): 107-111.
    [85]
    盛宝璐, 周爱萍, 黄东升, 等. 重组竹的顺纹拉压强度与本构关系[J]. 南京林业大学学报(自然科学版), 2015, 39(5): 123-128.
    [86]
    李频. 重组竹的力学性能试验[J]. 湖南文理学院学报(自然科学版), 2018, 30(2): 53-57.
    [87]
    任一萍, 刘红征, 郭文静, 等. 热处理温度对重组竹性能的影响[J]. 木材工业, 2018, 32(6): 1-4.
    [88]
    王一博, 王骁睿, 周爱萍. 重组竹中长柱双向偏心受压性能试验研究[J]. 工业建筑, 2018, 48(7): 65-70.
    [89]
    束必清, 张文娟, 陶玉鹏, 等. 重组竹力学性能及设计强度取值研究[J]. 西北林学院学报, 2022, 37(2): 216-222.
    [90]
    刘明西, 刘承阳, 刘问, 等. 重组竹-混凝土界面粘结-滑移本构模型[J]. 复合材料学报, 2022, 39(5): 2299-2307.
    [91]
    LIU C M, WU X Z, LIU X B, et al. Creep performance and life prediction of bamboo scrimber under long-term tension in parallel-to-grain[J]. Forests, 2023, 14(10), 1971.
    [92]
    GUAN S Y, ZHAO J C, DAI L L, et al. Static and dynamic mechanical behaviors of bamboo scrimber under combined tension-bending[J]. Composites Science and Technology, 2023, 242, 110191.
    [93]
    KANG S B, YU X F, XIONG J, et al. Cyclic behaviour of exterior bamboo scrimber beam-to-column connections[J]. Structures, 2024, 62, 106173.
    [94]
    翟佳磊, 李玉顺, 张家亮, 等. 冷弯薄壁型钢-重组竹组合工字形梁受弯性能研究[J]. 工业建筑, 2016, 46(1): 20-24.
    [95]
    周臻徽. 两种竹质工程材料的流变性能研究[D]. 长沙: 中南林业科技大学, 2017.
    [96]
    陈思, 魏洋, 赵鲲鹏, 等.重组竹受弯短期蠕变性能试验[J]. 建筑科学与工程学报, 2021, 38(5): 91-98.
    [97]
    XU J Y, ZHOU Z Z, ZHANG X C, et al. A simple and effective method to enhance the mechanical properties, dimensional stability, and mildew resistance of bamboo scrimber[J]. Polymers, 2023, 15(20), 4162.
    [98]
    WANG X Y, LUO X Y, REN H Q, et al. Bending failure mechanism of bamboo scrimber[J]. Construction and Building Materials, 2022, 326, 126892.
    [99]
    何乘根. 重组竹-铝板组合梁在弯、剪状态下的力学性能研究[D]. 福州: 福建农林大学, 2020.
    [100]
    崔峰, 李宜霏, 贾冲, 等. 基于高斯混合模型的采煤工作面冲击危险性评价[J]. 煤田地质与勘探, 2024, 52(10): 85-96.
    [101]
    中华人民共和国住房和城市建设部.建筑结构可靠性设计统一指标: GB 50068—2018[S]. 北京: 中国建筑工业出版社, 2018.
    [102]
    伍希志, 史金桥, 李贤军, 等. 碳纤维增强聚合物-重组竹复合材的弯曲力学性能[J]. 林业工程学报, 2020, 5(3): 41-47.
    [103]
    WANG M, HARRIES K A, ZHAO Y X, et al. Variation of mechanical properties of P. edulis (Moso) bamboo with moisture content[J]. Construction and Building Materials, 2022, 324, 126629.
    [104]
    何子奇, 钟紫勤, 周绪红, 等. 毛竹材强度数据统计与回归分析模型[J]. 建筑结构学报, 2023, 44(10): 123-132.
    [105]
    盛叶, 何钰雯, 郭任坤, 等. 重组竹抗弯试验及特征值确定[J]. 林业科学, 2024, 60(7): 149-157.
    [106]
    LI J N, YAN J, ZHOU Y Y, et al. Analyzing the effects of size and density on the ultimate compressive strength of structural laminated bamboo parallel to the grain[J]. Journal of Building Engineering, 2024, 90, 109481.
    [107]
    XIAO Y, WU Y, LI J, et al. An experimental study on shear strength of glubam[J]. Construction and Building Materials, 2017, 150: 490-500.
    [108]
    WU C, VAHEDI N, VASSILOPOULOS A P, et al. Mechanical properties of a balsa wood veneer structural sandwich core material[J]. Construction and Building Materials, 2020, 265, 120193.
    [109]
    STEPASHKIN A A, NIKITIN N Y. Statistical analysis, regression, and neural network modeling of the tensile strength of thermoplastic unidirectional carbon fiber-polysulfone composites[J]. Carbon Trends, 2024, 15, 100368.
    [110]
    CONOVER W J. Practical nonparametric statistics[M]. New York: John Wiley & Sons, Inc., 1999: 428-435.
    [111]
    赵秀, 关帅, 时兰翠. 多项式拟合落叶松规格材抗弯强度与抗拉强度之间的关系[J]. 林业机械与木工设备, 2013, 41(6): 30-32

    ,35.
    [112]
    何子奇, 钟紫勤, 周绪红, 等. 毛竹材强度数据统计与回归分析模型[J]. 建筑结构学报, 2023, 44(10): 123-132.
  • Relative Articles

    [1]YANG Xinyu, YU Xian, ZHANG Ming, FAN Haodong, LI Wenlong, LIU Nanfeng, YU Zhixiang, LIU Changliang, CHEN Shuwei, ZHAO Shixing. Static Bending Test of Bamboo Scrimber Solid Web Beams and Trusses[J]. INDUSTRIAL CONSTRUCTION, 2025, 55(2): 52-59. doi: 10.3724/j.gyjzG24111103
    [2]WU Hongsen, WANG Gang, MA Huaigang, ZHANG Ming, ZHAO Shixing, YU Zhixiang, CHEN Shuwei, CHEN Kemin, ZHANG Xiaolong, YANG Shuheng. Experimental Study on the Dowel-Bearing Properties of Bamboo Scrimber[J]. INDUSTRIAL CONSTRUCTION, 2025, 55(2): 31-43. doi: 10.3724/j.gyjzG24102104
    [3]XIA Lin, MA Xinru, LI Hao, XU Li, JIANG Yongze, CHEN Yan, QI Jinqiu. Influence of Assembly Methods and Densities on Physical and Mechanical Properties of Moso Bamboo-Based Bamboo Scrimber[J]. INDUSTRIAL CONSTRUCTION, 2025, 55(2): 10-19. doi: 10.3724/j.gyjzG24083104
    [4]LI Hao, MA Xinru, XIA Lin, XU Li, JIANG Yongze, CHEN Yan, QI Jinqiu. Research on Physical and Mechanical Properties of Bambusa emeiensis Bamboo Scrimber[J]. INDUSTRIAL CONSTRUCTION, 2025, 55(2): 1-9. doi: 10.3724/j.gyjzG24083101
    [5]ZHOU Wansen, ZHONG Jufang, ZHANG Yanhong, HU Xiao. Research on Time-Frequency Parameter Prediction Models of Ground Motion[J]. INDUSTRIAL CONSTRUCTION, 2024, 54(12): 177-185. doi: 10.3724/j.gyjzG22110105
    [6]KONG Lingqi, LI Cuijuan. Study on System Inference of Probability Distribution of Geotechnical Parameters[J]. INDUSTRIAL CONSTRUCTION, 2022, 52(1): 129-136,97. doi: 10.13204/j.gyjzG21051203
    [7]PENG Lingyun, LIU Wen, SUN Rui. The Dynamic Model of Distribution Parameters for a Frame Structure by Base Isolation and the Regularity of Earthquake Responses[J]. INDUSTRIAL CONSTRUCTION, 2022, 52(2): 52-58,168. doi: 10.13204/j.gyjzG21031704
    [13]Hu Xiaopeng, Niu Ditao, Li Xiaochao. INVESTIGATION AND STATISTICAL ANALYSIS ON BASIC RESISTANCE PARAMETERS OF CONCRETE STRUCTURE[J]. INDUSTRIAL CONSTRUCTION, 2013, 43(6): 100-104. doi: 10.13204/j.gyjz201306021
    [14]Yang Lijun, Wang Wei, Zai Jinmin. THREE-PARAMETER MODEL FOR TIME-DEPENDENT BEARING CAPACITY OF PREFORMED PILE IN SOFT SOIL[J]. INDUSTRIAL CONSTRUCTION, 2008, 38(6): 54-57. doi: 10.13204/j.gyjz200806015
    [15]Zhang Jizhou, Miao Linchang, Wang Huajing. ANALYSIS OF PARAMETERS SENSITIVITY OF DUNCAN-CHANG MODEL AND STUDY ON THE CONTROLLING DEFORMATION[J]. INDUSTRIAL CONSTRUCTION, 2008, 38(3): 75-79. doi: 10.13204/j.gyjz200803021
    [16]Yao Yangping, Wan Zheng, Feng Xing. ROTATIONAL HARDENING MODEL BASED ON UNIFIED HARDENING PARAMETER[J]. INDUSTRIAL CONSTRUCTION, 2008, 38(8): 10-13,20. doi: 10.13204/j.gyjz200808003
    [17]Xu Shidai, Wang Fengquan. MODE PARAMETER IDENTIFICATION OF ENGINEERING STRUCTURE BASED ON ARMA MODEL[J]. INDUSTRIAL CONSTRUCTION, 2007, 37(5): 20-22. doi: 10.13204/j.gyjz200705005
    [18]Shao Yongjian. STRENGTH INDEX AND STATISTICAL PARAMETER OF LIGHTWEIGHT AGGREGATE CONCRETE[J]. INDUSTRIAL CONSTRUCTION, 2007, 37(8): 82-85. doi: 10.13204/j.gyjz200708021
  • Created with Highcharts 5.0.7Amount of accessChart context menuAbstract Views, HTML Views, PDF Downloads StatisticsAbstract ViewsHTML ViewsPDF Downloads2024-052024-062024-072024-082024-092024-102024-112024-122025-012025-022025-032025-0405101520
    Created with Highcharts 5.0.7Chart context menuAccess Class DistributionFULLTEXT: 11.1 %FULLTEXT: 11.1 %META: 83.3 %META: 83.3 %PDF: 5.6 %PDF: 5.6 %FULLTEXTMETAPDF
    Created with Highcharts 5.0.7Chart context menuAccess Area Distribution其他: 100.0 %其他: 100.0 %其他

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (14) PDF downloads(1) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return