Citation: | XU Qing, XU Xiaoda, ZENG Bin, LI Jiawei. Research Progress and Prospect of Performance Evaluation Techniques for Prestressed Concrete Structures[J]. INDUSTRIAL CONSTRUCTION, 2024, 54(10): 1-8. doi: 10.3724/j.gyjzG24091907 |
[1] |
李国平.预应力混凝土结构发展史[J].建筑, 2008(21):1.
|
[2] |
尤瑞林,范佳,宁迎智.我国铁路有砟轨道预应力混凝土轨枕的研究与发展综述[J].铁道标准设计, 2020, 64(7):1-6.
|
[3] |
马林.国产1860级低松弛预应力钢绞线疲劳性能研究[J].铁道标准设计,2000(5):21-23.
|
[4] |
谢承德.高强混凝土性能研究[J].混凝土及加筋混凝土,1989(3):3-11,43.
|
[5] |
胡世德.OVM预应力锚固体系锚下应力分析[J].公路,1992(1):25-29.
|
[6] |
国家市场监督管理局. 预应力混凝土用钢绞线:GB/T 5224—2023[S]. 北京:中国标准出版社,2023.
|
[7] |
中华人民共和国国家质量监督检验检疫总局. 预应力混凝土用钢棒:GB/T 5223.3—2017[S]. 北京:中国标准出版社,2017.
|
[8] |
国家市场监督管理局. 先张法预应力混凝土管桩:GB/T 13476—2023[S]. 北京:中国标准出版社,2023.
|
[9] |
中华人民共和国住房和城乡建设部. 混凝土结构设计规范:GB 50010—2010[S]. 北京:中国建筑工业出版社,2011.
|
[10] |
中华人民共和国住房和城乡建设部. 冷拔低碳钢丝应用技术规程:JGJ 19—2010[S]. 北京:中国建筑工业出版社,2010.
|
[11] |
中华人民共和国住房和城乡建设部. 无黏结预应力混凝土结构技术规程:JGJ 92—2016[S]. 北京:中国建筑工业出版社,2016.
|
[12] |
中国工程建设标准化协会. 混凝土结构耐久性评定标准:CECS 220:2007[S]. 北京:中国建筑工业出版社,2007.
|
[13] |
中华人民共和国住房和城乡建设部. 建筑结构检测技术标准:GB 50344—2019[S]. 北京:中国建筑工业出版社,2019.
|
[14] |
中华人民共和国住房和城乡建设部. 混凝土结构加固设计规范:GB 50367—2013[S]. 北京:中国建筑工业出版社,2013.
|
[15] |
中国工程建设标准化协会. 预应力结构诊治技术规程:T/CECS 1363—2023[S]. 北京:中国建筑工业出版社,2023.
|
[16] |
罗小龙,陆建城."十四五"时期发展新趋势与国土空间规划应对[J].城市规划,2019,43(10):9-12
,28.
|
[17] |
PILLAI R G, HUESTE M D, GARDONI P, et al. Time-variant service reliability of post-tensioned, segmental, concrete bridges exposed to corrosive environments[J]. Engineering Structures, 2010, 32(9): 2596-2605.
|
[18] |
HUANG X, KWON O S, BENTZ E. Evaluation of CANDU NPP containment structure subjected to aging and internal pressure increase [J]. Nuclear Engineering and Design, 2017, 314:82-92.
|
[19] |
武乾,张特刚.基于再生改造的旧工业厂房结构安全分析[J].建筑结构,2016,46(5):58-62.
|
[20] |
NEZAMIAN A, NICOLSON R J, IOSIF D. State of Art in Life Extension of Existing Offshore Structures[C]//Proceedings of the ASME 2012:31st International Conference on Ocean, Offshore and Arctic Engineering. Volume 2: Structures, Safety and Reliability. 2012:165-174.
|
[21] |
GHOLIZADEH S, LEMAN Z, BAHARUDIN B T H T. A review of the application of acoustic emission technique in engineering[J]. Struct Eng Mech, 2015,54(6): 1075-1095.
|
[22] |
HUSSIN M, CHAN T H T, FAWZIA S,et al.Identifying the prestress force in prestressed concrete bridges using ultrasonic technology[J/OL].International Journal of Structural Stability and Dynamics, 2020,20(10)[2024-09-19].https://doi.org/10.1142/s0219455420420146.
|
[23] |
曾滨,许庆.检测无黏结预应力混凝土结构中预应力值的方法:CN201711439077.9[P].2019-03-29.
|
[24] |
KIM J T, RYU Y S, YUN C B,et al.Vibration-based method to detect prestress loss in beam-type bridges[C/OL].Proceedings of SPIE: the International Society for Optical Engineering 5057.2003[2024-09-19].https://doi.org/10.1117/12.484638.
|
[25] |
尚仁杰,曾滨,荣华,等.应力释放法检测混凝土应力的标准化方法研究[J].工业建筑,2022,52(11):151-156.
|
[26] |
GUO W L, LIANG P, LIU H X, et al. An evaluation method for effective prestress of simply supported prestressed concrete beams with breathing cracks[J/OL]. Advances in Civil Engineering, 2021(1)[2024-09-19].https://doi.org/10.1155/2021/8876093.
|
[27] |
李世安,贺拴海,娄诚,等.基于横张增量法的PC梁桥现存应力测试与评估[J].长安大学学报(自然科学版),2012,32(2):70-73,81.
|
[28] |
NGUYEN T T, HOANG N D, NGUYEN T H, et al. Analytical impedance model for piezoelectric-based smart strand and its feasibility for prestress force prediction[J/OL]. Structural Control and Health Monitoring, 2022, 29(11)[2024-09-19].https://doi.org/10.1002/stc.3061.
|
[29] |
JOH C B, LEE J W, KWAHK I J. Feasibility study of stress measurement in prestressing tendons using Villari effect and induced magnetic field[J]. International Journal of Distributed Sensor Networks, 2013(3/4):1-8.
|
[30] |
ZHOU Z, HE J P, CHEN G D,et al. A smart steel strand for the evaluation of prestress loss distribution in post-tensioned concrete structures[J]. Journal of Intelligent Material Systems and Structures,2009,20(16): 1901-1912.
|
[31] |
尚仁杰, 黄其华, 李谦. 使用 19 年的预应力混凝土结构现存预应力值检测与统计分析[J]. 工业建筑, 2016, 46(4): 79-82.
|
[32] |
ESTEVA L, DÍAZ-LÓPEZ O J, VÁSQUEZ A, et al. Structural damage accumulation and control for life cycle optimum seismic performance of buildings[J]. Structure and Infrastructure Engineering, 2016, 12(7): 848-860.
|
[33] |
BISCHOFF P H. Deformation model for reinforced and cracked prestressed concrete[J]. ACI Structural Journal,2022,119(1): 243-254.
|
[34] |
GJØRV O E. Durability of concrete structures[J]. Arabian Journal for Science and Engineering, 2011,36(2): 151-172.
|
[35] |
孙洋, 陈涛, 赵卓. 病害预应力混凝土梁桥结构承载能力评估[J]. 世界桥梁, 2016, 44(4):87-91.
|
[36] |
赵煜,贺拴海,李春风,等.在役预应力混凝土箱梁开裂后承载力评估[J].同济大学学报(自然科学版),2010,38(9):1271-1275.
|
[37] |
王宇威,潘钻峰,曾滨,等.疲劳荷载作用对预应力长期损失影响试验研究与理论分析[J/OL].工程力学,2023-10-25[2024-09
-19].https://doi.org/10.6052/j.issn1000-4750.2023.05.0381.
|
[38] |
GARBER D B, GALLARDO J, DESCHENES D J,et al. Prestress loss calculations: another perspective[J]. PCI Jounrnal,2016,61(3): 68-85.
|
[39] |
张开银, 郭志伟, 顾津申,等. 预应力混凝土结构弯曲孔道预应力损失研究[J]. 固体力学学报, 2008, 29(增刊1):127-131.
|
[40] |
PÁEZ P M, SENSALE B. Improved prediction of long-term prestress loss in unbonded prestressed concrete members[J]. Engineering Structures, 2018, 174: 111-125.
|
[41] |
曾滨,徐曼,许庆.预应力筋/索非线性疲劳-松弛应力理论模型与计算方法[J].土木工程学报,2022,55(9):1-8.
|
[42] |
曾滨,潘钻峰,曹栋,等.不同应力水平对混凝土徐变性能的影响[J].工业建筑,2019,49(11):163-168.
|
[43] |
MADSEN H O, BAZANT Z P. Uncertainty analysis of creep and shrinkage effects in concrete structures[J]. ACI Journal, 1983, 80(2): 116-127.
|
[44] |
许庆,曾滨,徐晓达,等.基于高斯混合模型的混凝土结构预应力分布特征及估计方法[J].建筑结构学报,2022,43(10):60-67.
|
[45] |
许庆,李嘉伟,曾滨,等.基于实测预应力值的既有混凝土构件性能推定方法[J].工业建筑,2024,54(8):1-8.
|
[46] |
GHOSH M, MUKHOPADHYAY N, SEN P K, et al. Sequential estimation[M]. Hoboken:John Wiley & Sons, 2011.
|
[47] |
许庆,曾滨,徐晓达,等.基于序贯理论的混凝土结构有效预应力实测概率估计方法[J].建筑结构学报,2024,45(7):100-107.
|
[48] |
KEITEL H, DIMMIG-OSBURG A. Uncertainty and sensitivity analysis of creep models for uncorrelated and correlated input parameters[J]. Engineering Structures, 2010, 32(11): 3758-3767.
|
[49] |
DRAPER D. Assessment and propagation of model uncertainty[J]. Journal of the Royal Statistical Society Series B: Statistical Methodology,1995,57(1): 45-70.
|
[50] |
JENKINS C, KHANNA S. Mechanics of materials: a modern integration of mechanics and materials in structural design[M]. Salt Lake City:American Academic Press, 2005.
|
[51] |
WU K D, QIANG X H, XING Z, et al. Buckling in prestressed stayed beam-columns and intelligent evaluation[J/OL]. Engineering Structures, 2022,255(15)[2024-09-19].https:/doi.org/10.1016/j.engstruct.2022.113902.
|
[52] |
REHDER J, SIEGWART R, FURGALE P. A general approach to spatiotemporal calibration in multisensor systems[J]. IEEE Transactions on Robotics, 2016,32(2): 383-398.
|
[53] |
RUIZ A P, FLYNN M, LARGE M,et al. The great multivariate time series classification bake off: a review and experimental evaluation of recent algorithmic advances[J]. Data Mining and Knowledge Discovery, 2021,35: 401-449.
|
[54] |
NASER M Z, KODUR V, THAI H T,et al. StructuresNet and FireNet: Benchmarking databases and machine learning algorithms in structural and fire engineering domains[J/OL]. Journal of Building Engineering, 2021,44[2024-09-19].https://doi.org/10.1016/j.jobe.2021.102977.
|