Source Journal of Chinese Scientific and Technical Papers
Included as T2 Level in the High-Quality Science and Technology Journals in the Field of Architectural Science
Core Journal of RCCSE
Included in the CAS Content Collection
Included in the JST China
Indexed in World Journal Clout Index (WJCI) Report
XIAO Congzhen, LI Jianhui, MA Tianyi, WEI Yue, WU Zhenhong, QIAO Baojuan. Current Situation and Development of Retrofitting and Performance Improvement for Existing Building Structures[J]. INDUSTRIAL CONSTRUCTION, 2024, 54(1): 20-30. doi: 10.3724/j.gyjzG23120812
Citation: GONG Fuyuan, HUANG Zhe, PAN Zuanfeng, ZHAO Yuxi, ZENG Bin. Multi-Physics and Multi-Scale Analysis of Prestress Loss and Deflection in Large-Scale Structures Under the Influence of Environmental Humidity[J]. INDUSTRIAL CONSTRUCTION, 2024, 54(10): 21-30. doi: 10.3724/j.gyjzG24090902

Multi-Physics and Multi-Scale Analysis of Prestress Loss and Deflection in Large-Scale Structures Under the Influence of Environmental Humidity

doi: 10.3724/j.gyjzG24090902
  • Received Date: 2024-09-09
    Available Online: 2024-11-06
  • Prestressed structures, serving as key components in bridge and tunnel construction, frequently operate in high or variable humidity environments. To investigate the long-term deformation and prestress loss of prestressed beams under varying environmental humidities, this study employed the DuCOM-COM3 multi-physis and multi-scale finite element program to analyze prestressed concrete structures across different humidity levels and compared these findings with experimental results. The findings indicated that concrete beam prestress loss was influenced by environmental humidity; higher humidity reduced long-term deformation, thereby mitigating prestress loss and long-term deflection in these structures. This suggests that constitutive models based on multi-scale micro-pore structures could capture the micro-deformations within pore structures, enabling the determination of concrete structures’ mechanical properties through computations of micro-behavior and moisture transport within the concrete. Comparative experiments and calculations demonstrated that multi-field and multi-scale analysis of concrete structures could assess the effects of changing environments on the long-term performance of prestressed concrete structures. Through analyzing the mechanism of multi-physics and multi-scale analysis of moisture-heat-stress coupling, the paper simulated the prestress loss and long-term deflection of prestressed concrete beams under environmental humidity conditions of 40%, 60%, and 80%. The relations between environmental humidity and the shrinkage and creep,the long-term deformation,and the prestress loss were obtained.
  • [1]
    BAŽANT Z P. Prediction of concrete creep effects using age-adjusted effective[J]. Journal of the American Concrete Institute, 1972, 69(4): 212-217.
    [2]
    FELDMAN R F. Mechanism of creep of hydrated Portland cement paste[J]. Cement and Concrete Research, 1972, 2(5): 521-540.
    [3]
    ROSSI P, TAILHAN JL, LE MAOU F, et al. Basic creep behavior of concretes investigation of the physical mechanisms by using acoustic emission[J].Cement and Concrete Research, 2012, 42(1): 61-73.
    [4]
    ACKER P, ULM F J.Creep and shrinkage of concrete: physical origins and practical measurements[J]. Nuclear Engineering and Design, 1997, 203(2):143-158.
    [5]
    HOPE B B, BROWN N H. A model for the creep of concrete[J]. Cement and Concrete Research, 1975, 5(6): 577-586.
    [6]
    MINDESS S, YOUNG J F, LAWRENCE F V. Creep and drying shrinkage of calcium silicate pastes I: specimen preparation and mechanical properties[J]. Cement and Concrete Research, 1978, 8(5): 591-600.
    [7]
    NEVILLE A M, BROOKS J J. Creep of plain and structural concrete[M]. New York: Construction Press, 1983.
    [8]
    BAZANT Z P, ASGHARI A A, SCHMIDT J. Experimental study of creep of hardened concrete portland cement paste at variable water content[J]. Materials and Structures,1976, 9(52):279-290.
    [9]
    BAZANT Z P, WU S T. Creep and shrinkage law for concrete at variable humidity[J]. Journal of the Engineering Mechanics Division of ASCE, 1975, 100(102):1183-1209.
    [10]
    BAZANT Z P,CHERN J C. Concrete creep at variable humidity: Constitutive law and mechanism[J]. Materials and Structures, 1985, 18(103):1-20.
    [11]
    ASAMOTO S, OHTSUKA A, KUWAHARA Y, et al. Study on effects of solar radiation and rain on shrinkage, shrinkage cracking and creep of concrete[J]. Cement and Concrete Research, 2011, 41(6): 590-601.
    [12]
    AHARI A, FOROUGH S, KHODAII A, et al. Modeling the primary and secondary regions of creep curves for SBS-modified asphalt mixtures under dry and wet conditions[J]. Journal of Materials in Civil Engineering, 2014, 26(5): 904-911.
    [13]
    Vandewalle L. Concrete creep and shrinkage at cyclic ambient conditions[J]. Cement and Concrete Composites, 2000, 22(3):201-208.
    [14]
    RAO R, ZHANG Z, GAN Q, et al. A proposed model for creep in mass concrete under variable ambient conditions[J]. Materials Research Innovations, 2015, 19(54):2174-2180.
    [15]
    CAGNON H, VIDAL T, SELLIER A, et al. Drying creep in cyclic humidity conditions[J]. Cement and Concrete Research, 2015, 76(32):91-97.
    [16]
    LI P, HE S. Effects of variable humidity on the creep behavior of concrete and the long-term deflection of RC beams[J]. Advances in Civil Engineering, 2018(6):1-12.
    [17]
    李福如.在役预应力混凝土桥梁结构现状分析及剩余承载力评定 [D].青岛:青岛理工大学,2010.
    [18]
    XU G, YANG B, CHEN C, et al. A Study on Analysis of Long Span Continuous Rigid Frame Bridge[J]. IOP Conference Series: Materials Science and Engineering. 2019, 611(1):1757-8981.
    [19]
    YU P, DUAN Y H, FAN Q X, et al. Improved MPS model for concrete creep under variable humidity and temperature[J]. Construction and Building Materials. 2020, 243,118183.
    [20]
    谭景文.非均匀收缩对混凝土梁桥长期使用性能影响的研究[D].重庆:重庆交通大学,2010.
    [21]
    王龙,邬晓光,张柳煜,等.预应力混凝土T梁桥非均匀收缩徐变效应分析[J].重庆交通大学学报(自然科学版),2023,42(12):15-22.
    [22]
    PETER F T. Deformations in concrete cantilever bridges: observations and theoretical modeling [D]. Norway: The Norwegian University of Science and Technology, 2002.
    [23]
    MAEKAWA K, ISHIDA T, KISHI T. Multi-scale modeling of structural concrete [M]. Abingdon: CRC Press, 2009.
    [24]
    WANG Z, GONG F, MAEKAWA K. Multi-scale and multi-chemo-physics lifecycle evaluation of structural concrete under environmental and mechanical impacts [J]. Journal of Intelligent Construction, 2023,1(1),918003.
    [25]
    MAEKAWA K, ISHIDA T, KISHI T. Multi-scale modeling of concrete performance integrated material and structural mechanics [J]. Journal of Advanced Concrete Technology, 2003,1(2):91-126.
    [26]
    ISHIDA T, MAEKAWA K, KISHI T. Enhanced modeling of moisture equilibrium and transport in cementitious materials under arbitrary temperature and relative humidity history[J]. Cement and Concrete Research, 2007,37:565-578.
    [27]
    ASAMOTO S, ISHIDA T, MAEKAWA K. Time-dependent constitutive model of solidifying concrete based on thermodynamic state of moisture in fine pores[J]. Journal of Advanced Concrete Technology, 2006,4:301-323.
    [28]
    MABROUK R, ISHIDA T, MAEKAWA K. A unified solidification model of hardening concrete composite for predicting the young age behavior of concrete [J]. Cement and Concrete Composites, 2004,26:453-61.
    [29]
    PAN Z, MENG S. Three-level experimental approach for creep and shrinkage of high-strength high-performance concrete [J]. Engineering Structures, 2016, 120: 23-36.
  • Relative Articles

    [1]GUO Wei, ZHANG Yipeng, WAN Yufeng, CHEN An, SUN Jing. A State-of-the-Art Review of Research and Application of FRP Composites in Railway Infrastructure[J]. INDUSTRIAL CONSTRUCTION, 2024, 54(6): 190-196. doi: 10.3724/j.gyjzG24040601
    [2]WU Ying, LI Aiqun. Application and Circled Layer Scene Construction of Digital Twin Technology from Coupling Perspective of "City-Building-People"[J]. INDUSTRIAL CONSTRUCTION, 2023, 53(4): 180-189. doi: 10.13204/j.gyjzG23012403
    [3]Qi Yicong. REGENERATIVE DESIGN METHOD AND ANALYSIS OF INDUSTRIAL HERITAGE[J]. INDUSTRIAL CONSTRUCTION, 2014, 44(04): 40-44.
    [4]Shu Biqing, Zheng Juan. DETECTION APPRAISAL AND STRENGTHENING OF A BENT FRAME STRUCTURE PLANT[J]. INDUSTRIAL CONSTRUCTION, 2014, 44(06): 139-142. doi: 10.13204/j.gyjz201406030
    [5]Sun Changling, Wang Zhiyuan. THE EXAMPLE ABOUT THE ADAPTIVE REUSEOF OF AN INDUSTRIAL PLANT[J]. INDUSTRIAL CONSTRUCTION, 2013, 43(2): 168-171. doi: 10.13204/j.gyjz201302034
    [6]Xue Suduo, Zhang Yigang, Cao Zi, Li Xiongyan. PROSPECT AND FURTHER DEVELOPMENT OF SEISMIC RESEARCH ON SPATIAL STRUCTURES OVER LAST THIRTY YEARS IN CHINA[J]. INDUSTRIAL CONSTRUCTION, 2013, 43(6): 105-116. doi: 10.13204/j.gyjz201306022
    [7]Zhao Jida, Lan Tian. THIRTY YEARS PROGRESS AND FUTURE PROSPECT OF SPATIAL STRUCTURES IN CHINA[J]. INDUSTRIAL CONSTRUCTION, 2013, 43(4): 131-138,164. doi: 10.13204/j.gyjz201304028
    [8]Cao Xia, Xie Dan, Jin Lingzhi. REINFORCEMENT AND RENOVATION OF THE OFFICE BUILDING OF A POLICE STATION IN GUILIN[J]. INDUSTRIAL CONSTRUCTION, 2012, 42(4): 143-146,64. doi: 10.13204/j.gyjz201204029
    [9]Tang Hongyuan, Wang Zeyun, Jia Yigang. ASSESSMENT AND STRENGTHEN FOR A CHEMICAL FIBRE FACTORY BUILDING SUBJECTED TO FIRE DISASTER[J]. INDUSTRIAL CONSTRUCTION, 2012, 42(7): 152-155,170. doi: 10.13204/j.gyjz201207026
    [10]Zhou Hongbing. APPRAISAL OF THE IMPACT OF FOUNDATION CONSTRUCTION OF A HIGH-RISE BUILDING ON STRUCTURAL SAFETY OF THE ADJACENT BUILDING[J]. INDUSTRIAL CONSTRUCTION, 2010, 40(2): 116-119. doi: 10.13204/j.gyjz201002027
    [11]Yuan Chengfang, Niu Ditao, Wang Qinglin, Yuan Bo. SAFETY EVALUATION AND STRUCTURE STRENGTHENING OF A CHEMICAL PLANT SUBJECTED TO FIRE DISASTER[J]. INDUSTRIAL CONSTRUCTION, 2010, 40(6): 113-117. doi: 10.13204/j.gyjz201006026
    [12]Jiang Lixue, Zheng Qiaowen. SEISMIC ANALYSIS METHOD FOR RC FRAMES CONSIDERING INTERACTION BETWEEN PRIMARY AND SECONDARY STRUCTURES AND ITS APPLICATION[J]. INDUSTRIAL CONSTRUCTION, 2009, 39(5): 6-10. doi: 10.13204/j.gyjz200905002
    [13]Wang Junqiang. DAMAGES TO MULTISTORY BRICK-CONCRETE BUILDINGS AFTER WENCHUAN EARTHQUAKE AND THEIR APPRAISAL[J]. INDUSTRIAL CONSTRUCTION, 2009, 39(1): 47-49,59. doi: 10.13204/j.gyjz200901009
    [14]Zhang Kaichen, Wang Feng, Si Bo, Li Ming. DESIGN AND CONSTRUCTION OF THE CORBEL BETWEEN THE OLD COLUMN AND THE NEW BEAM FOR A REFORM PROJECT[J]. INDUSTRIAL CONSTRUCTION, 2009, 39(11): 126-128. doi: 10.13204/j.gyjz200911029
    [15]Zheng Qizhen, Bao Yongliang, Wei Lin. THE DETECTION & IDENTIFICATION ON THE MAJOR STRUCTURE OF PROTECTED HISTORICAL SIGNIFICANT BUILDING[J]. INDUSTRIAL CONSTRUCTION, 2009, 39(8): 1-3,7. doi: 10.13204/j.gyjz200908001
    [16]Shu Hongbo, Zheng Jianjun, Zhang Shaohua. QUALIFICATION AND REINFORCEMENT OF CONCRETE STRUCTURES AFTER FIRE[J]. INDUSTRIAL CONSTRUCTION, 2009, 39(8): 25-27. doi: 10.13204/j.gyjz200908007
    [17]Dong Hairong, Qi Shaoming, Sun Xiaolu, Wu Xin. STUDY ON TECHNOLOGY OF ENERGY-SAVING RECONSTRUCTION ON EXISTING RESIDENTIAL BUILDINGS IN THE COLD DISTRICT[J]. INDUSTRIAL CONSTRUCTION, 2009, 39(7): 4-6. doi: 10.13204/j.gyjz200907002
    [18]Tan Jun, Wang Ying, Zheng Wenzhong. DESIGN OF TWO TYPICAL POST-BUILT SUSPENDED STAIRCASES[J]. INDUSTRIAL CONSTRUCTION, 2008, 38(4): 119-123,86. doi: 10.13204/j.gyjz200804030
    [19]Zhong Wenle, Chen Pei, Jiang Fengchang, Yang Genhong, Lu Jianwang. STRENGTHENING AND RECONSTRUCTION A CHEMICAL WORKSHOP INTO 2-HLS90 CONCRETE-MIXING BUILDING[J]. INDUSTRIAL CONSTRUCTION, 2007, 37(2): 107-109. doi: 10.13204/j.gyjz200702027
    [20]Chun Qing, Qiu Hongxing, Huang Zhicheng, Pan Jianwu, Fang Zhibao. EXPERIMENTAL STUDY ON ANCHORAGE PERFORMANCE OF DOUBLE ADHESIVE ANCHORS FOR RC STRUCTURES[J]. INDUSTRIAL CONSTRUCTION, 2006, 36(2): 98-100. doi: 10.13204/j.gyjz200602029
  • Cited by

    Periodical cited type(12)

    1. 李凯,刘博,陈必光,杨卓,翟博渊. 重复压浆钢管桩在既有建筑基础加固中的应用. 广州建筑. 2025(01): 14-18 .
    2. 蔡旭东. 建筑结构加固改造技术与方法浅析. 广州建筑. 2025(01): 45-49 .
    3. 翟长海,丁俊男,史铁花,王代玉,黄颖. 既有建筑抗震韧性提升方法研究. 地震工程与工程振动. 2025(01): 18-27 .
    4. 黄晓旭,胡彪,李中流. 基于PDCA闭环模式的案例教学法在工程结构鉴定与加固课程中的应用. 科教导刊. 2025(01): 38-41 .
    5. 张吾健. 可持续发展理念下既有建筑改造设计策略分析. 住宅与房地产. 2024(06): 128-130 .
    6. 顾辉军. 既有建筑加固技术探析与应用——以某多层厂房加固为例. 建筑施工. 2024(05): 676-683 .
    7. 文应,蔡俊辉,孙健,郑代炳,江康. 城市更新改造中既有建筑的结构加固要点与实践. 新型城镇化. 2024(06): 57-60 .
    8. 苗元耀. 既有建筑结构加固改造原则及技术分析. 工程技术研究. 2024(12): 34-36 .
    9. 张荻,李涛杨,李伟. 城市更新为城市核心区注入新活力——既有建筑隔震托换加固改造项目的更新实践. 中国勘察设计. 2024(09): 67-69 .
    10. 梁春敏. 医院既有建筑局部结构加固实施难点及解决策略探究. 中国建筑金属结构. 2024(11): 87-89 .
    11. 陈光华,谢洪涛,孙柏锋. 基于价值工程的既有建筑加固改造项目经济性及模式创新研究. 工程管理学报. 2024(06): 117-122 .
    12. 吴梓楠,韩小雷,李建乐,黄世怡,董优. 建筑结构BIM正向设计的发展困境、关键技术与应用实践. 建筑结构. 2024(24): 136-144+135 .

    Other cited types(5)

  • Created with Highcharts 5.0.7Amount of accessChart context menuAbstract Views, HTML Views, PDF Downloads StatisticsAbstract ViewsHTML ViewsPDF Downloads2024-042024-052024-062024-072024-082024-092024-102024-112024-122025-012025-022025-030255075100125
    Created with Highcharts 5.0.7Chart context menuAccess Class DistributionFULLTEXT: 9.4 %FULLTEXT: 9.4 %META: 83.5 %META: 83.5 %PDF: 7.1 %PDF: 7.1 %FULLTEXTMETAPDF
    Created with Highcharts 5.0.7Chart context menuAccess Area Distribution其他: 9.4 %其他: 9.4 %其他: 0.9 %其他: 0.9 %Baden: 0.4 %Baden: 0.4 %Central District: 0.6 %Central District: 0.6 %China: 0.3 %China: 0.3 %Kennedy Town: 0.3 %Kennedy Town: 0.3 %三明: 0.1 %三明: 0.1 %上海: 6.4 %上海: 6.4 %东莞: 4.5 %东莞: 4.5 %乌鲁木齐: 0.1 %乌鲁木齐: 0.1 %保定: 0.3 %保定: 0.3 %信阳: 0.1 %信阳: 0.1 %六安: 0.1 %六安: 0.1 %兰州: 0.4 %兰州: 0.4 %北京: 12.0 %北京: 12.0 %南京: 3.3 %南京: 3.3 %南宁: 0.1 %南宁: 0.1 %南昌: 0.3 %南昌: 0.3 %厦门: 0.1 %厦门: 0.1 %台北: 0.1 %台北: 0.1 %台州: 0.7 %台州: 0.7 %合肥: 0.7 %合肥: 0.7 %吉隆坡: 0.3 %吉隆坡: 0.3 %周口: 0.4 %周口: 0.4 %呼和浩特: 0.3 %呼和浩特: 0.3 %咸宁: 0.1 %咸宁: 0.1 %哈尔滨: 0.4 %哈尔滨: 0.4 %唐山: 0.1 %唐山: 0.1 %商丘: 0.1 %商丘: 0.1 %喀什: 0.3 %喀什: 0.3 %天津: 0.7 %天津: 0.7 %太原: 0.1 %太原: 0.1 %威海: 0.1 %威海: 0.1 %宁波: 0.1 %宁波: 0.1 %安庆: 0.3 %安庆: 0.3 %安康: 0.4 %安康: 0.4 %安阳: 0.4 %安阳: 0.4 %宜春: 0.7 %宜春: 0.7 %宣城: 0.6 %宣城: 0.6 %常德: 0.7 %常德: 0.7 %广州: 1.6 %广州: 1.6 %廊坊: 0.3 %廊坊: 0.3 %张家口: 0.6 %张家口: 0.6 %徐州: 0.6 %徐州: 0.6 %德阳: 0.1 %德阳: 0.1 %成都: 3.0 %成都: 3.0 %扬州: 0.6 %扬州: 0.6 %无锡: 0.3 %无锡: 0.3 %昆明: 1.6 %昆明: 1.6 %昭通: 0.1 %昭通: 0.1 %曲靖: 0.9 %曲靖: 0.9 %朝阳: 0.1 %朝阳: 0.1 %杭州: 1.4 %杭州: 1.4 %松原: 0.4 %松原: 0.4 %柏林: 0.1 %柏林: 0.1 %武汉: 2.3 %武汉: 2.3 %沈阳: 0.3 %沈阳: 0.3 %河内: 0.1 %河内: 0.1 %泉州: 0.1 %泉州: 0.1 %济南: 1.6 %济南: 1.6 %济宁: 0.1 %济宁: 0.1 %海口: 0.4 %海口: 0.4 %淄博: 0.3 %淄博: 0.3 %淮安: 0.3 %淮安: 0.3 %深圳: 3.0 %深圳: 3.0 %温州: 0.6 %温州: 0.6 %湖州: 0.1 %湖州: 0.1 %漯河: 0.9 %漯河: 0.9 %漳州: 0.1 %漳州: 0.1 %濮阳: 0.9 %濮阳: 0.9 %烟台: 0.3 %烟台: 0.3 %珠海: 0.3 %珠海: 0.3 %益阳: 0.1 %益阳: 0.1 %眉山: 0.1 %眉山: 0.1 %石家庄: 0.6 %石家庄: 0.6 %福州: 1.0 %福州: 1.0 %芒廷维尤: 5.9 %芒廷维尤: 5.9 %芝加哥: 1.7 %芝加哥: 1.7 %苏州: 0.6 %苏州: 0.6 %荆门: 0.4 %荆门: 0.4 %莆田: 0.9 %莆田: 0.9 %蚌埠: 0.1 %蚌埠: 0.1 %衡阳: 0.3 %衡阳: 0.3 %衢州: 0.4 %衢州: 0.4 %西宁: 4.1 %西宁: 4.1 %西安: 1.6 %西安: 1.6 %贵阳: 0.4 %贵阳: 0.4 %赣州: 0.1 %赣州: 0.1 %运城: 0.7 %运城: 0.7 %郑州: 1.2 %郑州: 1.2 %重庆: 1.3 %重庆: 1.3 %金华: 0.1 %金华: 0.1 %金昌: 0.1 %金昌: 0.1 %银川: 0.4 %银川: 0.4 %镇江: 0.3 %镇江: 0.3 %长春: 0.4 %长春: 0.4 %长沙: 3.5 %长沙: 3.5 %阜新: 0.1 %阜新: 0.1 %阿姆斯特丹: 0.1 %阿姆斯特丹: 0.1 %青岛: 0.7 %青岛: 0.7 %马鞍山: 0.3 %马鞍山: 0.3 %鹰潭: 0.1 %鹰潭: 0.1 %齐齐哈尔: 0.1 %齐齐哈尔: 0.1 %其他其他BadenCentral DistrictChinaKennedy Town三明上海东莞乌鲁木齐保定信阳六安兰州北京南京南宁南昌厦门台北台州合肥吉隆坡周口呼和浩特咸宁哈尔滨唐山商丘喀什天津太原威海宁波安庆安康安阳宜春宣城常德广州廊坊张家口徐州德阳成都扬州无锡昆明昭通曲靖朝阳杭州松原柏林武汉沈阳河内泉州济南济宁海口淄博淮安深圳温州湖州漯河漳州濮阳烟台珠海益阳眉山石家庄福州芒廷维尤芝加哥苏州荆门莆田蚌埠衡阳衢州西宁西安贵阳赣州运城郑州重庆金华金昌银川镇江长春长沙阜新阿姆斯特丹青岛马鞍山鹰潭齐齐哈尔

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (60) PDF downloads(3) Cited by(17)
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return