Source Journal of Chinese Scientific and Technical Papers
Included as T2 Level in the High-Quality Science and Technology Journals in the Field of Architectural Science
Core Journal of RCCSE
Included in the CAS Content Collection
Included in the JST China
Indexed in World Journal Clout Index (WJCI) Report
Wang Yuanqing, Lin Yun, Zhang Yannian, Shi Gang, Shi Yongjiu. EXPERIMENTAL STUDY ON THE IMPACT TOUGHNESS OF Q460-C HIGH-STRENGTH CONSTRUCTION STEEL AT LOW TEMPERATURE[J]. INDUSTRIAL CONSTRUCTION, 2012, 42(1): 8-12,102. doi: 10.13204/j.gyjz201201002
Citation: ZHANG Xuechang, LI Yanhua, ZHANG Sumei, WANG Yuyin, ZHOU Chong. Experimental Research on Long-Term Performance of Axially Loaded Steel- Tube-Confined CFST Short Columns Considering Temperature Effect[J]. INDUSTRIAL CONSTRUCTION, 2025, 55(1): 110-119. doi: 10.3724/j.gyjzG24080306

Experimental Research on Long-Term Performance of Axially Loaded Steel- Tube-Confined CFST Short Columns Considering Temperature Effect

doi: 10.3724/j.gyjzG24080306
  • Received Date: 2024-08-03
    Available Online: 2025-03-28
  • In order to explore the long-term performance of steel-tube-confined concrete-filled steel tube (TCFST) short columns under axial compression, 10 specimens of TCFST short columns and 2 specimens of concrete-filled steel tube (CFST) short columns were designed and loaded under sustained axial compression for 850 days. The main research parameters include the stress ratio of core concrete (0.35,0.50 and 0.65), the ratio between inner and outer steel tubes (0.30,1.25 and 2.23), and the temperature (20,45 and 55 ℃). The effects of various parameters on the long-term deformation performance of specimens were compared and analysed. Axial compression tests were performed on 6 load-bearing specimens at room temperature, 6 load-bearing specimens subjected to the temperature action, as well as 4 load-free specimens for comparison, to investigate the influence of long-term loads and temperature effect on the axial compression bearing capacity. The results showed that the larger ratio between inner and outer steel tubes, the smaller stress ratio of core concrete, and the smaller temperature led to a long-term deformation of the TCFST. The combined effects of long-term loading and temperature had no significant effect on the initial stiffness and axial bearing capacity of the TCFST.
  • [1]
    张素梅,李孝忠,卢炜.钢管约束的钢管混凝土短柱轴压性能试验研究[J].建筑结构学报,2022,43(6):21-33.
    [2]
    ZHANG S, LI X, LU W, et al.Experimental study on behavior of steel-tube-confined CFST short columns under axial compression[J].Journal of Building Structures,2022,43:21-33.
    [3]
    LI X, ZHANG S, LU W, et al.Axial compressive behavior of steel-tube-confined concrete-filled-steel-tubes[J].Thin-Walled Structures,2022,181:1-17.
    [4]
    张素梅,李孝忠,陈雄图.圆钢管约束加强的方钢管混凝土短柱轴压性能研究[J].建筑结构学报,2021,42(增刊2):170-179.
    [5]
    HAVLASEK P,SMILAUER V,DOHNALOVA L,et al. Shrinkage-induced deformations and creep of structural concrete:1-year measurements and numerical prediction[J]. Cement and Concrete Research,2021,144,106402.
    [6]
    ALEXANDRE D M W. Stress assessment in reinforcement for columns with concrete creep and shrinkage through brazilian technical normative[J]. Journal of the Brazilian Society of Mechanical Sciences and Engineering,2020,43(1):1-14.
    [7]
    李艳华,张素梅,王焰.长期荷载作用对钢管约束的组合短柱变形及承载力的影响[J].工业建筑,2023,53(1):151-159

    ,19.
    [8]
    XIANG P,HUANG W,JIANG L. Investigations on the influence of prestressed concrete creep on train-track-bridge system[J]. Construction and Building Materials,2021,293,123504.
    [9]
    FRILIV N V,SMOLYAGO G A. Bended Reinforced concrete beams deformability under long-term and environmental influences[J]. IOP Conference Series:Materials Science and Engineering,2020,896(1),012006.
    [10]
    TAO L,QIN G C,ZHUANG J Z,et al. Axial impact load of a concrete-filled steel tubular member with axial compression considering the creep effect[J]. Materials,2019,12(19):3134-3134.
    [11]
    李艳华,张素梅,王焰.钢管约束的钢管混凝土轴压短柱长期变形性能[J].哈尔滨工业大学学报,2023,55(9):101-110.
    [12]
    王元丰. 钢管混凝土徐变理论[M]. 北京:科学出版社,2012.
    [13]
    王新杰,吴胜兴. 影响混凝土徐变因素的分析[J].江西科学,2007(5):616-619,655.
    [14]
    LADAOUI W,VIDAL T,SELLIER A. Effect of a temperature change from 20 to 50 ℃ on the basic creep of HPC and HPFRC[J]. Materials & Structures,2011,44(9):1629-1639.
    [15]
    鲁薇薇,杨永清,李晓斌. 随机变温作用下徐变对预应力混凝土梁桥结构行为的影响[J]. 公路交通科技,2017,34(12):82-89.
    [16]
    王永宝,廖平,贾毅,赵人达. 循环温度对大跨混凝土拱桥长期变形行为的影响[J]. 桥梁建设,2019,49(3):57-62.
    [17]
    全国钢标准化技术委员会. 金属材料 拉伸试验 第1部分:室温试验方法:GB/T 228.1—2021[S]. 北京:中国标准出版社,2021.
    [18]
    中华人民共和国住房和城乡建设部. 混凝土物理力学性能试验方法标准:GB/T 50081—2019[S]. 北京:中国建筑出版传媒有限公司,2024.
    [19]
    王友彪. 大跨度钢管混凝土拱桥温度场及温度效应分析[D]. 成都:西南交通大学,2013.
    [20]
    张学昌. 环境温度对钢管约束的CFST轴压短柱长期性能影响研究[D]. 哈尔滨:哈尔滨工业大学,2022.
  • Relative Articles

    [1]SHI Xudong, ZHANG Bei, CUI Yidan. Experimental Research on Precompression Deformation Performance of Prestressed Concrete with Different Strength Grades Experiencing Given Ultralow Temperatures[J]. INDUSTRIAL CONSTRUCTION, 2024, 54(4): 180-187. doi: 10.3724/j.gyjzG23071204
    [2]LI Bowen, GAO Cairu, LI Wang, WANG Wanqi, WANG Jun, PENG Cuncai, WU Hongyan, GAO Xiuhua, DU Linxiu. Effects of Final Cooling Temperature on Low-Temperature Impact Fracture Behavior of Q500 Weathering Bridge Steel[J]. INDUSTRIAL CONSTRUCTION, 2024, 54(12): 10-17. doi: 10.3724/j.gyjzG24013003
    [3]SHI Xudong, HAN Yuanhai, TIAN Jialun. Experimental Study on Effective Preloading Performance of Prestressed Concrete with Given Water Content at Different Ultralow Temperatures[J]. INDUSTRIAL CONSTRUCTION, 2023, 53(6): 181-186,193. doi: 10.13204/j.gyjzG22052706
    [4]SHI Xudong, HAN Daquan, LI Yaqiang. Experimental Study on Influence of Stress Levels on Compressive Deformation Performances of Concrete Exposed to Ultralow Temperatures[J]. INDUSTRIAL CONSTRUCTION, 2022, 52(2): 120-125. doi: 10.13204/j.gyjzG21051810
    [5]XIE Jian, LI Yungai, XU Fuquan, KONG Qingxun, SHU Tianyu. EXPERIMENTAL STUDY ON PROPERTIES OF IMPACT RESISTANCE FOR VIBRATION-ABSORPTION FACILITIES IN PLANTS[J]. INDUSTRIAL CONSTRUCTION, 2021, 51(3): 65-70,84. doi: 10.13204/j.gyjzG20041317
    [6]MA Yingchang, LIU Haifeng, ZHANG Minghu. EFFECTS OF DESERT SAND REPLACEMENT RATE AND FLY ASH CONTENT ON THE COMPRESSIVE STRENGTH OF CONCRETE UNDER LOW TEMPERATURE[J]. INDUSTRIAL CONSTRUCTION, 2020, 50(5): 81-87,80. doi: 10.13204/j.gyjz202005014
    [7]SHI, Xudong, QIAN. EXPERIMENTAL RESEARCH ON CRYOGENIC TEMPERATURE COMPRESSIVE STRENGTH OF CONCRETE UNDER COUPLING ACTION OF KEY INFLUENCING FACTORS[J]. INDUSTRIAL CONSTRUCTION, 2020, 50(1): 135-141. doi: 10.13204/j.gyjz202001022
    [8]SHI Xudong, CUI Yidan, QIAN Lei. EXPERIMENTAL RESENRCH ON CRYOGENIC TEMPERATURE TENSILE STRENGTH OF CONCRETE UNDER COUPLING ACTION OF KEY INFLUENCING FACTORS[J]. INDUSTRIAL CONSTRUCTION, 2020, 50(8): 85-91. doi: 10.13204/j.gyjzG19110708
    [16]Xie Jian, Han Xiaodan, Pei Jiaming, Lei Guangcheng. EXPERIMENTAL STUDY OF MECHANICAL PROPERTIES OF REINFORCING STEELS AT CRYOGENIC TEMPERATURES[J]. INDUSTRIAL CONSTRUCTION, 2015, 45(1): 126-129. doi: 10.13204/j.gyjz201501025
    [17]Shi Gang, Zhang Jianxing. FATIGUE TEST OF HIGH STRENGTH STEEL Q460D[J]. INDUSTRIAL CONSTRUCTION, 2014, 44(03): 6-10. doi: 10.13204/j.gyjz201403004
    [18]Jiang Dejin, Chen Shaofan, Jia Dongyun. DISCUSSION ON THE WORKING TEMPERATURE AND QUALITY GRADE OF STEEL MATERIAL[J]. INDUSTRIAL CONSTRUCTION, 2009, 39(6): 32-35,41. doi: 10.13204/j.gyjz200906008
  • Created with Highcharts 5.0.7Amount of accessChart context menuAbstract Views, HTML Views, PDF Downloads StatisticsAbstract ViewsHTML ViewsPDF Downloads2024-052024-062024-072024-082024-092024-102024-112024-122025-012025-022025-032025-040510152025
    Created with Highcharts 5.0.7Chart context menuAccess Class DistributionFULLTEXT: 9.2 %FULLTEXT: 9.2 %META: 90.8 %META: 90.8 %FULLTEXTMETA
    Created with Highcharts 5.0.7Chart context menuAccess Area Distribution其他: 12.2 %其他: 12.2 %China: 2.3 %China: 2.3 %东莞: 2.3 %东莞: 2.3 %北京: 7.6 %北京: 7.6 %十堰: 1.5 %十堰: 1.5 %南京: 0.8 %南京: 0.8 %南昌: 0.8 %南昌: 0.8 %台州: 0.8 %台州: 0.8 %合肥: 0.8 %合肥: 0.8 %哈尔滨: 0.8 %哈尔滨: 0.8 %唐山: 2.3 %唐山: 2.3 %嘉兴: 0.8 %嘉兴: 0.8 %天津: 3.1 %天津: 3.1 %宣城: 0.8 %宣城: 0.8 %巴音郭楞: 0.8 %巴音郭楞: 0.8 %常州: 0.8 %常州: 0.8 %广州: 0.8 %广州: 0.8 %张家口: 3.8 %张家口: 3.8 %成都: 0.8 %成都: 0.8 %扬州: 3.1 %扬州: 3.1 %无锡: 0.8 %无锡: 0.8 %杭州: 2.3 %杭州: 2.3 %武汉: 0.8 %武汉: 0.8 %淮南: 3.1 %淮南: 3.1 %湖州: 0.8 %湖州: 0.8 %漯河: 11.5 %漯河: 11.5 %石家庄: 0.8 %石家庄: 0.8 %芒廷维尤: 17.6 %芒廷维尤: 17.6 %芝加哥: 1.5 %芝加哥: 1.5 %苏州: 0.8 %苏州: 0.8 %衡阳: 0.8 %衡阳: 0.8 %西宁: 9.9 %西宁: 9.9 %重庆: 0.8 %重庆: 0.8 %长沙: 2.3 %长沙: 2.3 %其他China东莞北京十堰南京南昌台州合肥哈尔滨唐山嘉兴天津宣城巴音郭楞常州广州张家口成都扬州无锡杭州武汉淮南湖州漯河石家庄芒廷维尤芝加哥苏州衡阳西宁重庆长沙

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (16) PDF downloads(0) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return