Source Journal of Chinese Scientific and Technical Papers
Included as T2 Level in the High-Quality Science and Technology Journals in the Field of Architectural Science
Core Journal of RCCSE
Included in the CAS Content Collection
Included in the JST China
Indexed in World Journal Clout Index (WJCI) Report
CAO Wenzhao, WU Xujun, ZHANG Xingjie, LUO Yongsheng, GONG Chao. State-of-the-Art and Prospects of Prefabricated Excavation Support Technologies[J]. INDUSTRIAL CONSTRUCTION, 2025, 55(4): 168-179. doi: 10.3724/j.gyjzG24071906
Citation: CAO Wenzhao, WU Xujun, ZHANG Xingjie, LUO Yongsheng, GONG Chao. State-of-the-Art and Prospects of Prefabricated Excavation Support Technologies[J]. INDUSTRIAL CONSTRUCTION, 2025, 55(4): 168-179. doi: 10.3724/j.gyjzG24071906

State-of-the-Art and Prospects of Prefabricated Excavation Support Technologies

doi: 10.3724/j.gyjzG24071906
  • Received Date: 2024-07-19
    Available Online: 2025-06-07
  • Publish Date: 2025-04-01
  • The existing foundation excavation engineering in China is mainly based on the temporary design concept to carry out the design and construction of supporting structure. Prefabricated excavation support structures have been widely used in recent years due to their advantages of reusability, high construction efficiency, green environmental protection and cost saving. The paper first summarized the current studies and application status of common prefabricated horizontal bracing and vertical support structures, expounded on the application of intelligent construction technologies such as BIM, construction robots, advanced perception technologies, and servo control in prefabricated excavation support projects, and combed through the related standards and technical specifications for prefabricated excavation support technologies released in recent years. Secondly, the problems arising in the development of prefabricated excavation support technology were analyzed, followed by the targeted suggestions. Finally, taking the foundation excavation of the MCC Tower in Qianhai as an example, the development and application process of the composite support system composed of concrete-filled steel tubes and T-shaped steel members was introduced, and the future popularization and application of prefabricated foundation excavation support technologies were discussed.
  • [1]
    中国建筑节能协会,重庆大学城乡建设与发展研究院. 中国建筑能耗与碳排放研究报告(2023年)[J]. 建筑,2024(2):46-59.
    [2]
    李连祥,赵仕磊,张菊连,等. 全回收基坑支护技术发展及思考展望[J/OL]. 工业建筑,2023[ 2023-11-07]. https://doi.org/10.13204/j.gyjzG23022605
    [3]
    王卫东,丁文其,杨秀仁,等. 基坑工程与地下工程:高效节能、环境低影响及可持续发展新技术[J]. 土木工程学报,2020,53(7):78-98.
    [4]
    王锐松,郭成超,林沛元,等. 富水粉土基坑装配式可回收支护开挖响应分析[J]. 岩土力学,2023,44(3):843-853.
    [5]
    陈富强,李卓勋,李长江. 装配式结构在基坑工程中的应用研究现状及展望[J]. 广东土木与建筑,2019,26(11):30-36.
    [6]
    庄诗潮,张建霖,张灿辉,等. 装配式预应力鱼腹式钢支撑系统的刚度研究[J]. 土木工程学报,2021,54(4):18-25.
    [7]
    毕平均,许绮炎. 鱼腹梁刚度的影响因素分析[J]. 地下空间与工程学报,2021,17(1):165-171.
    [8]
    周臻,郭从明,王立云,等. 带滑动索预应力鱼腹梁的免迭代分析方法[J]. 东南大学学报(自然科学版),2019,49(1):34-39.
    [9]
    吴祖咸,楼文娟,高子珺. 单向张弦梁结构的受力性能研究[J]. 钢结构,2010,25(7):1-3,18.
    [10]
    刘建鹏. 装配式张弦梁钢支撑基坑支护主动控制原理分析[J]. 工程与建设,2023,37(6):1727-1731.
    [11]
    谢卫兵,郭海轮,郑钊泽. 装配式张弦梁钢支撑在某深基坑工程中的应用[J]. 广东土木与建筑,2022,29(1):22-25.
    [12]
    胡琦,施坚,黄天明,等. 预应力型钢组合支撑受力性能分析及试验研究[J]. 岩土工程学报,2019,41(增刊1):93-96.
    [13]
    陈昆,詹旺宇,刘红波. 装配式钢支撑基坑支护结构体系基坑开挖与稳定性模拟分析[J]. 钢结构(中英文),2019,34(12):71-76.
    [14]
    胡琦,施坚,方华建,等. 型钢组合支撑研究综述[J]. 建筑施工,2019,41(12):2111-2113.
    [15]
    龚超,侯兆新,梁伟桥,等. 一种标准化、可扩展的装配式基坑内支撑体系:CN 202020162299.1[P]. 2020-11-06.
    [16]
    刘国彬,王卫东. 基坑工程手册[M]. 北京:中国建筑工业出版社,2009.
    [17]
    龚晓南,俞建霖. 可回收锚杆技术发展与展望[J]. 土木工程学报,2021,54(10):90-96.
    [18]
    付文光,邹俊峰,黄凯. 可回收锚杆技术研究综述[J]. 地下空间与工程学报,2021,17(增刊1):512-522,528.
    [19]
    欧孝夺,全守岳,彭远胜,等. 新型装配式基坑支护结构设计与试验[J]. 岩土力学,2018,39(9):3433-3439.
    [20]
    杨学祥,焦园发,杨语驿. 充气膨胀控制锚杆的研制与试验[J]. 岩土力学,2020,41(3):149-156,184.
    [21]
    盛宏光,张勇,丁巧爱. 压力分散型回收式锚索的设计与施工[J]. 工程勘察,2004(4):47-50.
    [22]
    凌同华,谷淡平,曹峰,等. 软土地区型钢水泥土搅拌墙墙-土相互作用试验研究[J]. 防灾减灾工程学报,2018,38(3):409-418.
    [23]
    谷淡平,凌同华. 悬臂式型钢水泥土搅拌墙的水泥土承载比和墙顶位移分析[J]. 岩土力学,2019,40(5):1957-1965.
    [24]
    ARNOLD M,BECKHAUS K,WIEDENMANN U. Cut-off wall construction using cutter soil mixing:a case study[J]. Geotechnik,2011,34:11-21.
    [25]
    潘泓,王加利,曹洪,等. 钢板桩围堰在不同施工工序下的变形及内力特性研究[J]. 岩石力学与工程学报,2013,32(11):2316-2324.
    [26]
    杨靓. 组合钢板桩(HSW工法)支护结构设计及其工程应用[D]. 南京:东南大学,2016.
    [27]
    WANG J F,XIANG H W,YAN J G. Numerical simulation of steel sheet pile support structures in foundation pit excavation[J]. International Journal of Geomechanics,2019,19(4),05019002.
    [28]
    MORIYASU S,CHIEW S P,YAN J G,et al. Comparison of flexural stiffness between hat-type and U-type steel sheet pile retaining walls in a field test in Singapore[J]. Geotechnical Engineering,2020,51(1),00465828.
    [29]
    DOUBROVSKY M P,MESHCHERYAKOV G N. Physical modeling of sheet piles behavior to improve their numerical modeling and design[J]. Soils and Foundations,2015,55(4):691-702.
    [30]
    OSTHOFF D,GRABE J. Deformational behaviour of steel sheet piles during jacking[J]. Computers and Geotechnics,2018,101:1-10.
    [31]
    蒋元海. 对现阶段我国预制混凝土桩行业发展的几点思考[J]. 混凝土与水泥制品,2020(6):30-33,40.
    [32]
    宋帅奇,黄博文,潘乾通. 局部张拉预应力装配式地连墙受力及变形分析[J]. 混凝土,2019(10):125-129,134.
    [33]
    韩银华,罗叠峰. 新型预制地下连续墙设计与施工技术[J]. 施工技术,2018,47(7):71-75.
    [34]
    郭帅杰,宋绪国. 基于沉桩模拟试验的装配式地下连续墙沉桩阻力评估方法[J]. 岩土力学,2019,40(1):269-274.
    [35]
    许国光,油新华,耿冬青,等. 自卡式预制地下连续墙接头工艺研究[J]. 施工技术,2018,47(3):135-136.
    [36]
    崔涛. 新型预制地下连续墙接头性能研究[J]. 施工技术,2019,48(12):36-38.
    [37]
    杨毅秋,周慧超,杨贵生,等. 装配式地下连续墙设计施工技术研究[J]. 铁道工程学报,2020,37(2):91-97.
    [38]
    张勣翔,许宏发,陈明雄. 侧向静载下装配式复合墙模型试验研究[J]. 地下空间与工程学报,2011,7(4):695-699.
    [39]
    俞峰,陈鑫,洪哲明. 渠式切割装配式地下连续墙的防水施工措施:CN202010021980.9[P]. 2020-05-19.
    [40]
    卢勇东,杜思宏,庄典,等. 数字和智慧时代BIM与GIS集成的研究进展:方法、应用、挑战[J]. 建筑科学,2021,37(4):126-134.
    [41]
    王正凯. 基于BIM的装配式建筑预制构件设计加工技术研发[D]. 北京:中国建筑科学研究院,2018.
    [42]
    肖阳功杰,朱生湲,李佳荣,等. 智能机器人在装配式建筑中的应用分析[J]. 智能建筑,2021(1):65-67.
    [43]
    ZHU A Y,PAUWELS P,DE VRIES B. Smart component-oriented method of construction robot coordination for prefabricated housing[J]. Automation in Construction,2021,129,103778.
    [44]
    陈湘生,洪成雨,苏栋. 智能岩土工程初探[J]. 岩土工程学报,2022,44(12):2151-2159.
    [45]
    朴春德,施斌,魏广庆,等. 分布式光纤传感技术在钻孔灌注桩检测中的应用[J]. 岩土工程学报,2008,30(7):976-981.
    [46]
    刘立新,任祥瑞,雷志强,等. 基于分布式光纤传感技术的钢板桩施工全过程演化规律[J]. 中外公路,2020,40(3):119-124.
    [47]
    DING Y,WANG P,YU S. A new method for deformation monitoring on H-pile in SMW based on BOTDA[J]. Measurement,2015,70:156-168.
    [48]
    HUYNH T C. Vision-based autonomous bolt-looseness detection method for splice connections:design,lab-scale evaluation,and field application[J]. Automation in Construction,2021,124,103591.
    [49]
    RAMANA L,CHOI W,CHA Y J. Fully automated vision-based loosened bolt detection using the Viola-Jones algorithm[J]. Structure Health Monitor,2018,18(2):422-434.
    [50]
    韩达光,秦国成,周银,等. 基于BIM和三维激光扫描在基坑监测中的应用[J]. 重庆交通大学学报(自然科学版),2019,38(6):72-76.
    [51]
    CHEN B G,YAN T F,SONG D B,et al. Experimental investigations on a deep excavation support system with adjustable strut length[J]. Tunnelling and Underground Space Technology,2021,115,104046.
    [52]
    LI M G,DEMEIJER O,CHEN J J. Effectiveness of servo struts in controlling excavation-induced wall deflection and ground settlement[J]. Acta Geotechnica,2020,15(9):2575-2590.
    [53]
    孙九春,白廷辉. 地铁基坑钢支撑轴力伺服系统设置方式研究[J]. 地下空间与工程学报,2019,15(增刊1):195-204.
    [54]
    黄彪,李明广,侯永茂,等. 轴力自补偿支撑对支护结构受力变形影响研究[J]. 岩土力学,2018,39(增刊2):359-365.
    [55]
    北京市住房和城乡建设委员会. 可拆除锚杆技术规程:DB 11/T 1366—2016[S]. 北京:北京市住房和城乡建设委员会,2016.
    [56]
    广西壮族自治区住房和城乡建设厅. 装配式基坑支护技术规范:DB/T 45-043—2017[S]. 南宁:广西壮族自治区住房和城乡建设厅,2017.
    [57]
    中国土木工程学会. 预应力鱼腹式基坑钢支撑技术规程:T/CCES 3—2017[S]. 北京:中国建筑工业出版社,2017.
    [58]
    浙江省住房和城乡建设厅. 基坑工程装配式型钢组合支撑应用技术规程:DB 33/T 1142—2017[S]. 杭州:浙江省住房和城乡建设厅,2017.
    [59]
    安徽省住房和城乡建设厅. 装配式钢支撑基坑支护技术标准:DB 34/T 3466—2019[S]. 合肥:安徽省住房和城乡建设厅,2019.
    [60]
    陕西省住房和城乡建设厅. 装配式预应力鱼腹梁组合钢支撑技术规程:DBJ 61/T 191—2021[S]. 西安:陕西省住房和城乡建设厅,2021.
    [61]
    福建省住房和城乡建设厅. 装配式张弦梁钢结构基坑支撑技术标准:DBJ/T 13-389—2021[S]. 福州:福建省住房和城乡建设厅,2021.
    [62]
    中国工程建设标准化协会. 可回收锚杆应用技术规程:T/ CECS 999—2022[S]. 北京:中国计划出版社,2022.
    [63]
    中国工程建设标准化协会. 全回收基坑支护技术规程:T/ CECS 1208—2022[S]. 北京:中国建筑工业出版社,2022.
    [64]
    福建省住房和城乡建设厅. 装配式钢结构基坑支护技术标准:DBJ/T 13-437—2023[S]. 福州:福建省住房和城乡建设厅,2023.
    [65]
    JAILLON L,POON C S,CHIANG Y H. Quantifying the waste reduction potential of using prefabrication in building construction in Hong Kong[J]. Waste Management,2009,29(1):309-320.
    [66]
    AYE L,NGO T,CRAWFORD R H,et al. Life cyclegreenhouse gas emissions and enegy analysis of prefabricated reusable building modules[J]. Energy and Buildings,2012,47:159-168.
    [67]
    WEI H,YAN L,ZHANG S J. Research on existing problems of fabricated building in China[R]. Guangzhou:Harbin Institute of Technology,2017.
    [68]
    SANSOM M,AVERY N. Briefing:reuse and recycling rates of UK steel demolition arisings[J]. Engineering Sustainability,2014,167(3):89-94.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (34) PDF downloads(0) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return