Source Journal of Chinese Scientific and Technical Papers
Included as T2 Level in the High-Quality Science and Technology Journals in the Field of Architectural Science
Core Journal of RCCSE
Included in the CAS Content Collection
Included in the JST China
Indexed in World Journal Clout Index (WJCI) Report
Volume 55 Issue 8
Aug.  2025
Turn off MathJax
Article Contents
ZHAO Muzi, XU Chengyan, GONG Chao, GAO Wenchang, WU Xujun, HOU Zhaoxin. Axial Compressive Performance and Design Method for Reinforced Hollow High-Strength/Ultra-High-Strength Concrete-Filled Square Steel Tubular Columns[J]. INDUSTRIAL CONSTRUCTION, 2025, 55(8): 157-167. doi: 10.3724/j.gyjzG24071104
Citation: ZHAO Muzi, XU Chengyan, GONG Chao, GAO Wenchang, WU Xujun, HOU Zhaoxin. Axial Compressive Performance and Design Method for Reinforced Hollow High-Strength/Ultra-High-Strength Concrete-Filled Square Steel Tubular Columns[J]. INDUSTRIAL CONSTRUCTION, 2025, 55(8): 157-167. doi: 10.3724/j.gyjzG24071104

Axial Compressive Performance and Design Method for Reinforced Hollow High-Strength/Ultra-High-Strength Concrete-Filled Square Steel Tubular Columns

doi: 10.3724/j.gyjzG24071104
  • Received Date: 2024-07-10
    Available Online: 2025-10-24
  • Reinforced hollow high-strength/ultra-high strength concrete-filled square steel tubular (RHHS-CFST) columns are a kind of prefabricated members with advantages such as mature production techniques, low cos, light weight, and high bearing capacity. As prefabricated components, they hold broad application potential in engineering structures, particularly for long-span foundation excavation support systems and multi-level parking facilities. However, there is no design method capable of accurately predicting the axial compressive bearing capacity of this member. The available design methods cannot account for the influence of high concrete strength (exceeding C80 grade) or the early buckling of the steel tube caused by the high hollow ratio and insufficient wall thickness. To address this issue, this paper conducted a systematic parametric investigation with a reliable finite element modeling method (FEM). Subsequently, a new expression was proposed to predict the axial compressive bearing capacity based on available test data and finite element analytical results. The results showed that the hollow ratio and width-to-thickness ratio of the steel tube significantly affected the axial compressive bearing capacity. For the members with a hollow ratio greater than 0.25 and a width-to-thickness ratio unsatisfying the requirements of current design codes for concrete-filled steel tubes, local buckling of the steel tube might occur before reaching the peak load, leading to a reduction in strength. The predicted results from the proposed expression matched well with the FEM results and test data. The average ratio of predicted to measured/FEM results was 0.935, with a coefficient of variation of 0.108. This indicates that the proposed design method can safely predict the axial compressive bearing capacity of RHHS-CFST members. The highest overestimation by the proposed design method was only 8.6%.
  • loading
  • [1]
    韩林海. 钢管混凝土结构原理[M]. 北京: 中国建筑工业出版社, 2023.
    [2]
    蒋小慧. 空心钢管混凝土支撑力学性能与应用研究[D]. 西安: 长安大学, 2022.
    [3]
    中华人民共和国住房和城乡建设部. 钢管混凝土结构技术规范: GB 50936-2014[S]. 北京: 中国建筑工业出版社, 2014.
    [4]
    中华人民共和国住房和城乡建设部. 钢管混凝土混合结构技术标准: GB/T 51446-2021[S]. 北京: 中国建筑工业出版社, 2021.
    [5]
    韩林海. 钢管混凝土结构: 理论与实践[M]. 4版. 北京: 科学出版社, 2022.
    [6]
    中国建设标准化协会. 矩形钢管混凝土结构技术规程: CECS159∶2004[S]. 北京: 中国计划出版社, 2004.
    [7]
    查晓雄, 余敏, 钟善桐. 《钢管混凝土结构技术规范》中承载力公式的一致性研究[J]. 建筑结构学报, 2013, 34(增刊1): 11-20.
    [8]
    TAO Z, WANG Z B, YU Q. Finite element modelling of concrete-filled steel stub columns under axial compression[J]. Journal of Construction Steel Research, 2013, 89(10): 121-131.
    [9]
    ZHAO M Z, LEHMAN D E, ROEDER C W. Modeling recommendations for RC and CFST sections in LS-Dyna including bond slip[J]. Engineering Structures, 2021, 229, 111612.
    [10]
    LEE J, FENVES G L. Plastic-Damage model for cyclic loading of concrete structures[J]. Journal of Engineering Mechanics, 1998, 124(8): 892-900.
    [11]
    LUBLINER J, OLIVER J, OLLER S, et al. A plastic-damage model for concrete[J]. International Journal of Solids&Structures, 1989, 25(3): 299-326.
    [12]
    李旭. 配筋空心方钢管高强混凝土轴压短柱力学性能研究[D]. 沈阳: 沈阳建筑大学, 2023.
    [13]
    张斌, 胡红松, 杨朱金. 方钢管超高强钢纤维混凝土柱轴压性能研究[J]. 建筑材料学报, 2023, 26(5): 547-554.
    [14]
    YAN J B, CHEN A Z, ZHU J S. Behaviours of square UHPFRC-filled steel tubular stub columns under eccentric compression[J]. Thin-Walled Structures, 2020, 159(2), 107222.
    [15]
    YAN J B, YANG X Y, LUO Y L, et al. Axial compression behaviours of ultra-high performance concrete-filled Q690 high-strength steel tubes at low temperatures[J]. Thin-Walled Structures, 2021, 169(5), 108419.
    [16]
    冯宸. 高强钢管超高性能混凝土短柱轴心受压性能研究[D]. 重庆: 重庆大学, 2022.
    [17]
    周凯凯. 方钢管超高性能混凝土短柱轴心受压性能研究[D]. 武汉: 武汉大学, 2019.
    [18]
    CHEN S M, ZHANG R, JIA L J, et al. Structural behavior of UHPC filled steel tube columns under axial loading[J]. ThinWalled Structures, 2018, 130(2): 550-563.
    [19]
    颜燕祥, 徐礼华, 蔡恒, 等. 高强方钢管超高性能混凝土短柱轴压承载力计算方法研究[J]. 建筑结构学报, 2019, 40(12): 128-137.
    [20]
    广东省住房和城乡建设厅. 锤击式预应力混凝土管桩工程技术规程: DBJ/T 15-22-2021[S]. 北京: 中国城市出版社, 2021.
    [21]
    建华建材投资有限公司. 预制高强钢管混凝土管桩(SC桩): Q/321183 PJC 006-2015[S]. 珠海: 建华建材投资有限公司, 2015.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (42) PDF downloads(1) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return