| Citation: | MA Kaichen, XU Yangming, JIANG Linsong, XING Song, WANG Xie. Prognosis of Fatigue Damage in Steel Bridge Decks Based on Long Short-Term Memory Neural Networks[J]. INDUSTRIAL CONSTRUCTION, 2025, 55(7): 109-118. doi: 10.3724/j.gyjzG24060304 |
| [1] |
HU N,DAI G L,YAN B,et al. Recent development of design and construction of medium and long span high-speed railway bridges in China[J]. Engineering Structures,2014,74:233-241.
|
| [2] |
张清华,卜一之,李乔. 正交异性钢桥面板疲劳问题的研究进展[J]. 中国公路学报,2017,30(3):14-30,39.
|
| [3] |
XIAO Z G,YAMADA K,INOUE J,et al. Fatigue cracks in longitudinal ribs of steel orthotropic deck[J]. International Journal of Fatigue,2006,28(4):409-416.
|
| [4] |
JI B,LIU R,CHEN C,et al. Evaluation on root-deck fatigue of orthotropic steel bridge deck[J]. Journal of Constructional Steel Research,2013,90:174-183.
|
| [5] |
KAINUMA S,YANG M,JEONG Y S,et al. Experiment on fatigue behavior of rib-to-deck weld root in orthotropic steel decks[J]. Journal of Constructional Steel Research,2016,119:113-122.
|
| [6] |
张清华,崔闯,卜一之,等. 钢结构桥梁疲劳 2019 年度研究进展[J]. 土木与环境工程学报(中英文),2020,42(5
):147-158.
|
| [7] |
孟凡超. 钢桥面板抗疲劳关键技术[M]. 北京:人民交通出版社,2018.
|
| [8] |
李爱群,缪长青,李兆霞,等. 润扬长江大桥结构健康监测系统研究[J]. 东南大学学报(自然科学版),2003(5):544-548.
|
| [9] |
PRŽULJ N,MALOD-DOGNIN N. Network analytics in the age of big data[J]. Science,2016,353(6295):123-124.
|
| [10] |
YAN W,DENG L,ZHANG F,et al. Probabilistic machine learning approach to bridge fatigue failure analysis due to vehicular overloading[J]. Engineering Structures,2019,193:91-99.
|
| [11] |
DENG Y,ZHANG M,FENG D M,et al. Predicting fatigue damage of highway suspension bridge hangers using weigh-in-motion data and machine learning[J]. Structure and Infrastructure Engineering,2021,17(2):233-248.
|
| [12] |
HENG J,ZHENG K,FENG X,et al. Machine Learning-Assisted probabilistic fatigue evaluation of Rib-to-Deck joints in orthotropic steel decks[J]. Engineering Structures,2022,265,114496.
|
| [13] |
SUN Z,SANTOS J,CAETANO E. Data-driven prediction and interpretation of fatigue damage in a road-rail suspension bridge considering multiple loads[J]. Structural Control and Health Monitoring,2022,29(9),2997.
|
| [14] |
宋刚,张云峰,包芳勋,等. 基于粒子群优化 LSTM 的股票预测模型[J]. 北京航空航天大学学报,2019,45(12):2533-2542.
|
| [15] |
杨青,王晨蔚. 基于深度学习 LSTM 神经网络的全球股票指数预测研究[J]. 统计研究,2019,36(3):65-77.
|
| [16] |
CHEN S,GE L. Exploring the attention mechanism in LSTM-based Hong Kong stock price movement prediction[J]. Quantitative Finance,2019,19(9):1507-1515.
|
| [17] |
欧阳红兵,黄亢,闫洪举. 基于 LSTM 神经网络的金融时间序列预测[J]. 中国管理科学,2020,28(4):27-35.
|
| [18] |
张宇帆,艾芊,林琳,等. 基于深度长短时记忆网络的区域级超短期负荷预测方法[J]. 电网技术,2019,43(6):1884-1892.
|
| [19] |
ALHUSSEIN M,AURANGZEB K,HAIDER S I. Hybrid CNN-LSTM model for short-term individual household load forecasting[J]. IEEE Access,2020,8:180544-180557.
|
| [20] |
朱凌建,荀子涵,王裕鑫,等. 基于 CNN-Bi LSTM 的短期电力负荷预测[J]. 电网技术,2021,45(11):4532-4539.
|
| [21] |
GUL M J,URFA G M,PAUL A,et al. Mid-term electricity load prediction using CNN and Bi-LSTM[J]. The Journal of Supercomputing,2021,77(10):10942-10958.
|
| [22] |
MEMARZADEH G,KEYNIA F. Short-term electricity load and price forecasting by a new optimal LSTM-NN based prediction algorithm[J]. Electric Power Systems Research,2021,192,106995.
|
| [23] |
王祥雪,许伦辉. 基于深度学习的短时交通流预测研究[J]. 交通运输系统工程与信息,2018,18(1):81-88.
|
| [24] |
TIAN Y,ZHANG K,LI J,et al. LSTM-based traffic flow prediction with missing data[J]. Neurocomputing,2018,318:297-305.
|