Source Journal of Chinese Scientific and Technical Papers
Included as T2 Level in the High-Quality Science and Technology Journals in the Field of Architectural Science
Core Journal of RCCSE
Included in the CAS Content Collection
Included in the JST China
Indexed in World Journal Clout Index (WJCI) Report
YANG Depo, CHEN Rongchang, YANG Rui, ZHANG Yaoting. Analysis of Time-Varying Temperature Effect of Hydration Heat of Ultra-High Strength Mass Concrete[J]. INDUSTRIAL CONSTRUCTION, 2025, 55(2): 246-253. doi: 10.3724/j.gyjzG24043004
Citation: YANG Depo, CHEN Rongchang, YANG Rui, ZHANG Yaoting. Analysis of Time-Varying Temperature Effect of Hydration Heat of Ultra-High Strength Mass Concrete[J]. INDUSTRIAL CONSTRUCTION, 2025, 55(2): 246-253. doi: 10.3724/j.gyjzG24043004

Analysis of Time-Varying Temperature Effect of Hydration Heat of Ultra-High Strength Mass Concrete

doi: 10.3724/j.gyjzG24043004
  • Received Date: 2024-04-30
    Available Online: 2025-04-02
  • In order to study the time-varying temperature effect of hydration heat of ultra-high strength mass concrete, a finite element model was established based on the anchor foundation of a high tower of Dubai River. Through simulations, the characteristics of temperature distribution of hydration heat of ultra-high strength concrete (C90/105) were obtained, and the pipe cooling system was optimized for temperature control. On this basis, the time-varying temperature effect of hydration heat of ultra-high strength concrete was studied by changing the concrete pouring temperature and the inlet temperature of pipe cooling. The results indicated that the peak surface temperature, the peak internal temperature, and temperature difference between the interior and the surface of the structure were approximately positively correlated with the concrete pouring temperature, and for each 5 ℃ decrease in the pouring temperature, the average maximum temperature difference between the interior and the surface of the concrete structure decreased by approximately 2 ℃. For each 5 ℃ decrease in the inlet temperature of pipe cooling, the average maximum temperature difference between the interior and the surface of the concrete structure diminished by approximately 5 ℃. However, if the inlet temperature was substantially lower than the concrete pouring temperature, the internal temperature of the structure might become lower than the surface temperature. In practical engineering, the reasonable design of ultra-high strength concrete structure and pipe cooling system should be taken into account the requirements of temperature control and resource utilization.
  • [1]
    XIAO C, LI J, LI Y, et al. Application and innovation of high-strength concrete in high-rise building structures[J]. Structural Engineering International, 2022, 32(2): 236-242.
    [2]
    李传豹.高强混凝土在高层建筑中的优化应用[D].深圳:深圳大学,2018.
    [3]
    URAZOVA ALINA ANDREEVN A, DENISOVICH K E, OLIMPIEVICH K M, et al. Technology of production and application of high-strength concrete[J]. Modern Scientific Researches and Innovations, 2017, 70, 78504.
    [4]
    王晓东.高强混凝土在公路桥梁工程中的应用[J].交通世界,2020(35):145-146.
    [5]
    栾桂良. 高强与高性能混凝土的发展及应用[J]. 城市建设理论研究(电子版),2015(4):2757-2758.
    [6]
    CERVERA M, OLIVER J, PRATO T. Thermo-chemo-mechanical model for concrete. I: Hydration and aging[J]. Journal of Engineering Mechanics, 1999, 125(9): 1018-1027.
    [7]
    朱伯芳. 大体积混凝土温度应力与温度控制[M]. 北京:中国电力出版社, 1999.
    [8]
    王德辉. 超高强混凝土的硬化过程[D]. 长沙:湖南大学,2015.
    [9]
    侯炜,宋一凡,马超. 基于管冷系统的大体积混凝土水化热时变温度效应[J]. 长安大学学报(自然科学版),2021,41(4):65-77.
    [10]
    唐杨, 曹海洋, 谭红梅. 冷水管布置线形及设置参数对承台水化热分析的影响[J]. 混凝土与水泥制品, 2019(4):86-91.
    [11]
    CASTILHO E, SCHCLAR N, TIAGO C, et al. FEA model for the simulation of the hydration process and temperature evolution during the concreting of an arch dam[J]. Engineering Structures, 2018, 174: 165-177.
    [12]
    HUANG Y, LIU G, HUANG S, et al. Experimental and finite element investigations on the temperature field of a massive bridge pier caused by the hydration heat of concrete[J]. Construction and Building Materials, 2018, 192:240-252.
    [13]
    冯树隆.某黄河大桥承台大体积混凝土的水化热分析[J].水利与建筑工程学报,2024,22(1):110-118.
    [14]
    岳著文,贾同安,李晓东,等. 某特大桥大体积承台水化热计算分析[C]//2022年工业建筑学术交流会论文集.北京:2022.
    [15]
    马伟强,孙伟,安峻彤,等.下沉式现浇隧道底板大体积混凝土温度监测与数值模拟研究[J].建筑结构,2023,53(增刊2):1454-1458.
    [16]
    张海明,潘乐,荣华,等.某"华龙一号"核电站核岛基础大体积混凝土施工裂缝控制[J].工业建筑,2019,49(2):27-30.
    [17]
    曹霖. C80混凝土柱流变性能及水化热模拟研究[J]. 建筑施工,2020,42(12):2318-2320

    ,2327.
    [18]
    袁军峰,张建东,刘朵,等.大跨连续箱梁桥0~#块高强混凝土水化热及温控措施分析[J].中外公路,2019,39(5):97-101.
    [19]
    SBIA L A, PEYVANDI A, HARSINI I, et al. Study on field thermal curing of ultra-high-performance concrete employing heat of hydration[J]. ACI Materials Journal, 2017, 114(5): 733-744.
    [20]
    许文忠. 大体积混凝土基础温度裂缝控制施工技术研究[D]. 上海:同济大学,2007.
    [21]
    侯雁南. 大体积混凝土裂缝控制及处理措施研究[D]. 济南:山东大学,2007.
    [22]
    袁毅. 超高强大体积混凝土水化热温控分析研究[D]. 武汉:华中科技大学,2019.
    [23]
    中华人民共和国住房和城乡建设部. 大体积混凝土施工标准:GB 50496—2018 [S]. 北京:中国建筑工业出版社,2018.
    [24]
    中华人民共和国住房和城乡建设部. 大体积混凝土温度测控技术规范:GB/T 51028—2015[S]. 北京:中国建筑工业出版社,2015.
    [25]
    ACI. Specifications for structural concrete: ACI 301-16[S]. Farmington Hills, MI: American Concrete Institute, 2016.
    [26]
    BSI. Concrete-part 1: specification, performance, production and conformity: BS EN 206-1∶2000[S]. London: British Standards Institution, 2000.
    [27]
    CEN. Eurocode 2: design of concrete structures-part 1-1: general rules and rules for buildings: EN 1992-1-1∶2004[S]. Brussels: European Committee for Standardization, 2004.
    [28]
    王龙,鲁乃唯,王柏文. 大体积混凝土承台水化热分析及管冷参数优化[J]. 工程建设,2019,51(4):1-5

    ,17.
    [29]
    朱伯芳.混凝土绝热温升的新计算模型与反分析[J].水力发电,2003(4):29-32.
    [30]
    刘睫, 陈兵. 大体积混凝土水化热温度场数值模拟[J]. 混凝土与水泥制品, 2010(5):15-18,27.
    [31]
    MYERS T G, FOWKES N D, BALLIM Y. Modeling the cooling of concrete by piped water[J]. Journal of Engineering Mechanics, 2009, 135(12): 1375-1383.
    [32]
    KIM J K. Thermal analysis of hydration heat in concrete structures with pipe-cooling system[J]. Computers & Structures, 2001, 79(2):163-171.
    [33]
    宋福春, 刘策. 考虑管冷的大体积混凝土水化热分析[J]. 沈阳建筑大学学报(自然科学版), 2015,31(1):95-101.
    [34]
    魏德敏, 洪川海, 李重阳,等. 大体积混凝土基础的水管冷却温度场研究[J]. 天津大学学报(自然科学与工程技术版), 2016, 49(4):437-442.
    [35]
    陈宇. 桥梁大体积混凝土水化热温度控制研究[D]. 成都:西南交通大学, 2016.
    [36]
    张湧,刘斌,贺拴海,等.桥梁大体积混凝土温度控制与防裂[J].长安大学学报(自然科学版),2006(3):43-46.
    [37]
    GARDNER N J. Effect of temperature on the early-age properties of type I, type III, and type I/fly ash concretes[J]. ACI Materials Journal, 1990, 87(1):68-78.
    [38]
    BROOKS J J, AL-KAISI A F. Early strength development of portland and slag cement concretes cured at elevated temperatures[J]. ACI Materials Journal, 1990, 87(5):503-507.
    [39]
    TU A D, HOANG T T, BUI T T, et al. Evaluation of heat of hydration, temperature evolution and thermal cracking risk in high-strength concrete at early ages[J]. Case Studies in Thermal Engineering, 2020, 21,100658.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (9) PDF downloads(0) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return