Source Journal of Chinese Scientific and Technical Papers
Included as T2 Level in the High-Quality Science and Technology Journals in the Field of Architectural Science
Core Journal of RCCSE
Included in the CAS Content Collection
Included in the JST China
Indexed in World Journal Clout Index (WJCI) Report
LI Biao, ZHAO Na, ZHAO Jinjie, YANG Yongxin, TIAN Mi, LIU Xinyuan. Experimental Research on Influencing Factors of Tensile Properties of CFRP Plates[J]. INDUSTRIAL CONSTRUCTION, 2023, 53(10): 164-168. doi: 10.13204/j.gyjzG23040405
Citation: ZHANG Lifei, ZHANG Xuanyu, ZHANG Ning, ZHOU Lingzhu, ZHENG Yu, XIA Lipeng. Research on Pull-out Test and Stress Model of UHPC Reinforced with GFRP Bent Bars[J]. INDUSTRIAL CONSTRUCTION, 2024, 54(6): 22-30. doi: 10.3724/j.gyjzG24041601

Research on Pull-out Test and Stress Model of UHPC Reinforced with GFRP Bent Bars

doi: 10.3724/j.gyjzG24041601
  • Received Date: 2024-04-16
    Available Online: 2024-06-24
  • Through the pull-out test of Glass Fiber Reinforced Polymer(GFRP) bent bars reinforced Ultra High Performance Concrete(UHPC), the mechanical performance and damage mechanism of GFRP bars in bending zone were studied. The cooperative performance of GFRP bent bars and UHPC was revealed. The stress model of specimens was established. The study variables include: diameter of GFRP bars, anchoring length of the tail end of bent bars, shapes of the tail ends of bars and types of bar matrix. The results showed that the diameter of GFRP bars had a great influence on the bending strength due to the influence of the fold in the bending area and the stress concentration on the shoulder. The increase of the anchoring length at the tail of the GFRP bars had an positive effect on the bending strength of GFPR bars within a certain range, while the shape of tail end (L-shaped and U-shaped) bars had a little influence on the bending strength. The failure mechanism of GFRP bars under tension in the bending zone was presented, and three stages of fracture process of GFRP bars were revealed: the matrix cracking at the inside of stressed shoulders of bars, the inner fiber cracking and the outer fiber cracking. A stress analysis model was established for the bending area of GFRP-UHPC in the pull-out state.
  • [1]
    黄健,阎亮,熊哲,等. 新型GFRP-钢复合筋材料拉伸性能测试[J].工业建筑,2024,54(4):219-227.
    [2]
    翟国良,汪海波,吴捷豪,等. 动荷载作用下FRP-混凝土-钢管组合结构能耗研究[J]. 工业建筑,2023,53(增刊1):340-343.
    [3]
    蒋凯,杨元璋,赵唯坚. FRP箍筋弯角强度预测模型评估[J]. 工业建筑,2023,53(增刊1):595-599.
    [4]
    张石,张爱林,张艳霞,等. 碳纤维增强复合材料筋混凝土框架结构动力性能试验研究[J]. 工业建筑,2023,53(2):92-98

    ,91.
    [5]
    丁小波,吴美仲,方五军,等.碳纤维增强复合材料条带箍筋混凝土梁剪切疲劳性能试验研究[J].工业建筑,2023,53(6):202-208

    ,42.
    [6]
    王静阳,刘荣进,陈平,等. 内养护剂对UHPC体积稳定性的影响[J]. 工业建筑,2023,53(增刊2):713-716,703.
    [7]
    王会杰,李红卫,郝梅,等. 超高性能混凝土研究与应用[J]. 工业建筑,2023,53(增刊1):672-674.
    [8]
    辛灏辉. GFRP桥面板材料-结构一体化设计研究[D]. 上海:同济大学,2017.
    [9]
    阎培渝. 超高性能混凝土(UHPC)的发展与现状[J]. 混凝土世界,2010(9):36-41.
    [10]
    肖锐,邓宗才,申臣良. 超高性能混凝土(UHPC)材料与构件设计[J]. 特种结构,2013(2):114-120.
    [11]
    HAN S, FAN C, ZHOU A, et al. Shear behavior of concrete beams reinforced with corrosion-resistant and ductile longitudinal steel-FRP composite bars and FRP stirrups[J]. Engineering Structures, 2023, 278,115520.
    [12]
    SARIKAYA H, BALCIOĞLU H. The effect of glass fiber rebar reinforcement on the flexural behavior of reinforced concrete structural elements[C]//Conference: IV. International Ege Composite Materials Symposium. Izmir: Ege University, 2018: 725-735.
    [13]
    白浩阳,薛伟辰,江佳斐.基于数据库的玻璃纤维增强复合材料箍筋弯拉强度计算方法[J].哈尔滨工程大学学报,2024,45(2):223-229.
    [14]
    ZHOU L Z, ZHENG Y, DI B, et al. Shear behaviour of SWSS-SCC beams reinforced with GFRP bars and stirrups: experimental and analytical investigations[J]. Structures, 2023, 56,104946.
    [15]
    ZHAO J, BAO X, YANG S, et al. Experimental and theoretical studies on the shear performance of concrete beams reinforced with fiber-reinforced polymer stirrups[J/OL]. Materials, 2024, 17[2024-04-16]. https://doi.org/10.3390/ma17030593.
    [16]
    ZHAO W J, JIANG K, YANG Y Z. Numerical simulation of bent corner of FRP stirrups with rectangular cross sections[J/OL]. Journal of Structural Engineering, 2023, 149[2024-04-16]. https://doi.org/10.1061/JSENDH.STENG-11950.
    [17]
    蒋济同,高瑜. FRP筋混凝土梁抗剪性能研究综述[J]. 复合材料科学与工程,2023(12):119-128.
    [18]
    江佳斐,吕佳豪,薛伟辰.FRP箍筋强度保留率分布模型与可靠性分析[J/OL].建筑材料学报,2024[2024-06-07].http://kns.cnki.net/kcms/detail/31.

    1764.TU.20231212.1657.003.html.
    [19]
    YUAN F, WANG Y, LI P, et al. Shear behaviour of seawater sea-sand coral aggregate concrete beams reinforced with FRP strip stirrups[J]. Engineering Structures, 2023, 290,116332.
    [20]
    American Society for Testing and Materials. Standard specification for solid round glass fiber reinforced polymer bars for concrete reinforcement: ASTM D7957/D7957M-17[S]. West Conshohocken: ASTM International, 2017.
    [21]
    TOMLINSON D, FAM A. Performance of concrete beams reinforced with basalt FRP for flexure and shear[J/OL]. Journal of Composites for Construction, 2014, 19(2)[2024-04-16]. https://doi.org/10.1061/(ASCE)CC.1943-5614.0000491.
    [22]
    Canadian Standards Association (CSA). Specification for fibre-reinforced polymers (CAN/CSA S807∶19) [S]. Toronto: CSA Group, 2019.
    [23]
    EL-SAYED A K, EL-SALAKAWY E, BENMOKRANE B. Mechanical and structural characterization of new carbon FRP stirrups for concrete members[J]. Journal of Composites for Construction, 2007, 11(4):352-362.
    [24]
    宋岩超,蒋济同.新型封闭式复丝缠绕CFRP箍筋抗拉强度正交试验研究[J/OL].复合材料科学与工程,2024[2024-06-07].http://kns.cnki.net/kcms/detail/10.

    1683.tu.20240229.1612.003.html.
    [25]
    汪国贤,李明,张黎飞,等. GFRP箍筋弯折强度试验及理论研究[J]. 公路与汽运,2021(6):131-136.
    [26]
    CHOLOSTIAKOW S, DI BENEDETTI M, PILAKOUTAS K, et al. Experimental analysis of shear resisting mechanisms in FRP RC beams with shear reinforcement[J/OL]. Journal of Composites for Construction, 2020, 24(5)[2024-01-30]. https://doi.org/10.1061/(ASCE)CC.1943-5614.0001046.
  • Relative Articles

    [1]LIU Bin, YANG Jiaqi, LIU Tianqiao, HU Lili, FENG Peng. Finite Element Analysis of Reinforced Concrete Beams Strengthened with Prestressed CFRP Plates with High Ductility[J]. INDUSTRIAL CONSTRUCTION, 2024, 54(6): 72-80. doi: 10.3724/j.gyjzG23111328
    [2]LIU Bin, WANG Husheng, YANG Jiaqi, FENG Peng, ZHANG Qirui, SU Dengyang, WANG Cheng. Experimental Study on Strengthening RC Beams with Mid-Span Supporting Prestressed Carbon Fiber Plates[J]. INDUSTRIAL CONSTRUCTION, 2023, 53(3): 21-28. doi: 10.13204/j.gyjzG22083007
    [3]WANG Zi-hao, LI Cheng-gao, XIAN Gui-jun, XIONG Hao, BAI Jie, XU Guo-wen. Research on Bearing Performance of Multi-Bundle Parallel CFRP Cable Anchorage System[J]. INDUSTRIAL CONSTRUCTION, 2022, 52(9): 18-27. doi: 10.13204/j.gyjzG22022314
    [9]Zhang Xingqiang, Yao Jian. RESEARCH PROGRESS IN STRENGTHENING THEORY OF BENDING STEEL MEMBERS STRENGTHENED WITH CFRP[J]. INDUSTRIAL CONSTRUCTION, 2014, 44(10): 121-127. doi: 10.13204/j.gyjz201410025
    [10]Wang Xian, Chen Tao, Zhang Tianjun. EXPERIMENTAL STUDY ON TENSILE BEHAVIORS OF HYBRID CFRP-STEEL DOULBLE-LAP JOINTS USING BOLTS AND ADHESIVE[J]. INDUSTRIAL CONSTRUCTION, 2014, 44(10): 10-15. doi: 10.13204/j.gyjz201410003
    [11]Dong Zhenhua, Han Qiang, Du Xiuli. EXPERIMENTAL STUDY ON SEISMIC PERFORMANCE OF CFRP CONFINED BRIDGE PIER WITH RECTANGULAR HOLLOW CROSS SECTION[J]. INDUSTRIAL CONSTRUCTION, 2013, 43(6): 27-31. doi: 10.13204/j.gyjz201306007
    [12]Hong Bin, Xian Guijun, Li Hui. OPTIMIZATION OF THE PULTRUSION PROCESS PARAMETERS OF CFRP PLATES[J]. INDUSTRIAL CONSTRUCTION, 2013, 43(6): 9-13,26. doi: 10.13204/j.gyjz201306003
    [13]Li Biao, Yang Yongxin, Yue Qingrui, Wang Bin. RESEARCH ON TEST METHOD OF MECHANICAL PROPERTIES OF CFRP BARS[J]. INDUSTRIAL CONSTRUCTION, 2013, 43(6): 5-8,35. doi: 10.13204/j.gyjz201306002
    [14]Yu Bujun, Cai Wenhua, Zhang Jiwen, Liang Shuting, Tu Yongming. STUDY ON STATIC LOAD TESTS OF BOND TYPE ANCHORS FOR CFRP TENDONS[J]. INDUSTRIAL CONSTRUCTION, 2013, 43(4): 118-121,155. doi: 10.13204/j.gyjz201304025
    [15]Wang Quanfeng, Chai Zhenling, Wang Lingyun, Luo Yi. EXPERIMENTAL RESEARCH ON SEISMIC PERFORMANCE OF BRICK MASONRY WALL WITH PILASTER REINFORCED BY GFRP WITH "THROUGH-WALL" ANCHOR[J]. INDUSTRIAL CONSTRUCTION, 2012, 42(6): 65-71. doi: 10.13204/j.gyjz201206015
    [16]Wang Chenxia, Ming Wenhui. SEISMIC BEHAVIOR OF REINFORCED CONCRETE CRACK-SHORT COLUMNS STRENGTHENED WITH CFRP[J]. INDUSTRIAL CONSTRUCTION, 2011, 41(10): 15-19. doi: 10.13204/j.gyjz201110004
    [17]Li Susu, Chen Fengshan, Liu Yi. EXPERIMENT AND ANALYSIS OF LONG-TIME MECHANICAL PROPERTIES OF CARBON FIBER REINFORCED POLYMER[J]. INDUSTRIAL CONSTRUCTION, 2007, 37(5): 69-72. doi: 10.13204/j.gyjz200705018
    [18]Guo Chunhong, Yue Qingrui, Yang Yongxin, Cai Peng, Zhao Yan, Peng Fuming, Li Qingwei. EVALUATION OF MECHANICAL BEHAVIOR OF CARBON FIBER REINFORCED POLYMER[J]. INDUSTRIAL CONSTRUCTION, 2006, 36(2): 90-93. doi: 10.13204/j.gyjz200602027
  • Created with Highcharts 5.0.7Amount of accessChart context menuAbstract Views, HTML Views, PDF Downloads StatisticsAbstract ViewsHTML ViewsPDF Downloads2024-042024-052024-062024-072024-082024-092024-102024-112024-122025-012025-022025-0302.557.51012.515
    Created with Highcharts 5.0.7Chart context menuAccess Class DistributionFULLTEXT: 19.2 %FULLTEXT: 19.2 %META: 80.8 %META: 80.8 %FULLTEXTMETA
    Created with Highcharts 5.0.7Chart context menuAccess Area Distribution其他: 28.8 %其他: 28.8 %China: 3.6 %China: 3.6 %[]: 2.2 %[]: 2.2 %北京: 7.9 %北京: 7.9 %南京: 0.7 %南京: 0.7 %南通: 0.7 %南通: 0.7 %圣彼得堡: 2.2 %圣彼得堡: 2.2 %张家口: 3.6 %张家口: 3.6 %徐州: 0.7 %徐州: 0.7 %成都: 0.7 %成都: 0.7 %扬州: 0.7 %扬州: 0.7 %深圳: 2.2 %深圳: 2.2 %湖州: 0.7 %湖州: 0.7 %漯河: 2.9 %漯河: 2.9 %绵阳: 2.2 %绵阳: 2.2 %芒廷维尤: 10.1 %芒廷维尤: 10.1 %芝加哥: 8.6 %芝加哥: 8.6 %西宁: 20.9 %西宁: 20.9 %重庆: 0.7 %重庆: 0.7 %其他China[]北京南京南通圣彼得堡张家口徐州成都扬州深圳湖州漯河绵阳芒廷维尤芝加哥西宁重庆

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (133) PDF downloads(6) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return