Source Journal of Chinese Scientific and Technical Papers
Included as T2 Level in the High-Quality Science and Technology Journals in the Field of Architectural Science
Core Journal of RCCSE
Included in the CAS Content Collection
Included in the JST China
Indexed in World Journal Clout Index (WJCI) Report
Volume 55 Issue 5
May  2025
Turn off MathJax
Article Contents
QING Shuangquan, LI Chuanxi. Mechanical Properties of HS-HDC Based on Orthogonal Tests[J]. INDUSTRIAL CONSTRUCTION, 2025, 55(5): 280-291. doi: 10.3724/j.gyjzG24040506
Citation: QING Shuangquan, LI Chuanxi. Mechanical Properties of HS-HDC Based on Orthogonal Tests[J]. INDUSTRIAL CONSTRUCTION, 2025, 55(5): 280-291. doi: 10.3724/j.gyjzG24040506

Mechanical Properties of HS-HDC Based on Orthogonal Tests

doi: 10.3724/j.gyjzG24040506
  • Received Date: 2024-04-05
    Available Online: 2025-07-15
  • To prepare a low-carbon and cost-effective high-strength and high-ductility concrete ( HS-HDC ), the paper designed 16 groups of orthogonal tests with 5 factors and 4 levels of coal gangue powder, silica fume, PVA fibers, water-binder ratio, and sand-binder ratio, three tests of uniaxial compression, four-point bending, and electron microscope scanning were carried out to explore the influence of each factor on the mechanical properties of HS-HDC and its microscopic mechanism. The test results showed that the integrity of the uniaxial compression failure specimen was good. When the fiber volume content was not less than 1.0%, the surface cracks of the failure specimen were vertically distributed, and the higher the fiber content, the smaller the surface crack width of the specimen. The coal gangue powder and water-binder ratio significantly affected the compressive strength, with contribution rates of 44.83% and 33.56%, respectively. The four-point bending specimen exhibited two failure forms: single crack and multiple cracks, demonstrating a typical three-stage failure mode. Only PVA fibers had a significant effect on the bending strength, with a contribution rate of 66.10%. The comprehensive mechanical properties of the H5 mixture ratio ( coal gangue powder 0.6, silica fume 0.14, PVA fibers 1.7%, water-binder ratio 0.3, sand-binder ratio 0.5 ) were the best. The cubic compressive strength was 69.0 MPa, the flexural strength was 19.7 MPa, the equivalent flexural toughness was 108.9 kJ/m3, and the tensile strain capacity was 1.05%. Cement and fibers were the two most critical components that affected embodied energy and embodied carbon. Using solid waste to replace part of cement was a very effective way to reduce carbon emissions.
  • loading
  • [1]
    LI V C,WANG S X,WU C. Tensile strain-hardening behavior of polyvinyl alcohol engineered cementitious composite(ECC)[J]. ACI Materials Journal,2001,98(6):483-492.
    [2]
    WU R X,ZHAO T J,TIAN L,et al. Influence of silica fume and thermal damage on uniaxial tension performance of PVC-SHCC[J]. Applied Mechanics& Materials,2013,357-360:977-981.
    [3]
    ZHANG X F,XU S L. Ductility evaluation of reinforced UHTCC structural members[J]. Advanced Materials Research,2010,150-151:229-234.
    [4]
    Japan Society of Civil Engineers. Recommendations for design and construction of high performance fiber reinforced cement composites with multiple fine cracks(HPFRCC)[S]. Tokyo:JSCE,2008.
    [5]
    陕西省住房和城乡建设厅. 高延性混凝土应用技术规程:DBJ 61/T 112—2016[S]. 西安:陕西省建筑标准设计办公室,2016.
    [6]
    廖桥,余江滔,黄永强,等. 超高延性混凝土无筋拱静力和抗冲击性能研究[J]. 建筑结构,2023,53(24):21-28.
    [7]
    张伟,贺晶晶,胡炜,等. 高延性混凝土加固砌块砌体墙抗震性能试验及承载力研究[J]. 工程力学,2024,41:1-13.
    [8]
    张华鹏. 高延性混凝土(ECC)力学性能与加固隧道研究[D]. 重庆:重庆交通大学,2024.
    [9]
    邓明科,雷恒,张雨顺,等. 纤维织物增强高延性混凝土加固RC短柱抗剪性能试验研究[J]. 湖南大学学报(自然科学版),2024,51(1):79-89.
    [10]
    EMARA M,SALEM M A,MOHAMED H A,et al. Shear strengthening of reinforced concrete beams using engineered cementitious composites and carbon fiber-reinforced polymer sheets[J]. Fibers,2023,11(11). DOI:10.3390/fib11110098.
    [11]
    LIU D,QIN F,DI J,et al. Flexural behavior of reinforced concrete(RC)beams strengthened with carbon fiber reinforced polymer(CFRP)and ECC[J]. Case Studies in Construction Materials,2023,19,e02270.
    [12]
    寇佳亮,樊明艳,孙国兴,等. 高延性混凝土加固震损古旧砌体抗震性能试验及恢复力模型研究[J]. 振动与冲击,2022,41(7):106-115,125.
    [13]
    赵丹丹. HDC加固混凝土短柱小偏心受压损伤性能试验研究及数值模拟[D]. 西安:西安理工大学,2023.
    [14]
    宋诗飞,邓明科,张阳玺. 纤维网格-高延性混凝土加固预制空心板抗弯性能试验研究[J/OL]. 工程力学,2023:1-13[ 2023-10-19]. http://kns.cnki.net/kcms/detail/11.2595.O3.20231019.1418.003.html.
    [15]
    郭晓潞,李寅雪,袁淑婷. 水泥生命周期评价及其低环境负荷研究进展[J]. 建筑材料学报,2023,26(6):660-669.
    [16]
    李化建. 煤矸石的综合利用[M]. 北京:化学工业出版社,2010.
    [17]
    牛晓燕,王海,安明磊,等. 煤矸石粗骨料对混凝土力学性能的影响[J]. 混凝土,2023(1):68-72.
    [18]
    杨彪,姚贤华,何双华,等. 煤矸石粗骨料混凝土力学及耐久性能的研究进展[J]. 工业建筑,2023,53(1):212-222.
    [19]
    白国良,刘瀚卿,王建文,等. 基于骨料特性差异的煤矸石混凝土干燥收缩模型[J]. 土木工程学报,2023,56(11):27-42.
    [20]
    刘瀚卿,白国良,王建文,等. 煤矸石混凝土单轴受压应力-应变曲线试验研究[J]. 建筑结构学报,2023,44(7):236-245.
    [21]
    SYMONS K. Embodied Carbon:The Inventory of Carbon and Energy(ICE). A BSRIA Guide[J]. Proceedings of the Institution of Civil Engineers,2011,164(EN 4):206. DOI:10.1680/ENER.2011.164.4.206.
    [22]
    KUA H W,MAGHIMAI M. Steel-versus-concrete debate revisited:global warming potential and embodied energy analyses based on attributional and consequential life cycle perspectives[J]. Journal of Industrial Ecology,2017,21(1):82-100.
    [23]
    SAZEDJ S,MORAIS A J,JALALI S. Comparison of embodied energy and carbon dioxide emissions of brick and concrete based on functional units[J]. Physical Review,2002,65(7):133-136.
    [24]
    中华人民共和国交通运输部. 公路工程水泥及水泥混凝土试验规程:JTG 3420—2020[S]. 北京:人民交通出版社股份有限公司,2016.
    [25]
    中华人民共和国住房和城乡建设部. 混凝土物理力学性能试验方法标准:GB/T 50081—2019[S]. 北京:中国建筑工业出版社,2019.
    [26]
    中国工程建设协会. 纤维混凝土试验方法:CECS 13 ∶2009[S]. 北京:中国计划出版社,2009.
    [27]
    张继旺,黄满锋,苏仕参,等. 高强珊瑚混凝土(HSCC)单轴受压性能试验研究[J]. 硅酸盐通报,2022,41(7):2275-2282,2291.
    [28]
    魏慧,吴涛,杨雪,等. 纤维增韧轻骨料混凝土单轴受压应力-应变全曲线试验研究[J]. 工程力学,2019,36(7):126-135,173.
    [29]
    刘瑞江,张业旺,闻崇炜,等. 正交试验设计和分析方法研究[J]. 实验技术与管理,2010,27(9):52-55.
    [30]
    YANG E H,SAHMARAN M,YANG Y Z,et al. Rheological control in production of engineered cementitious composites[J]. ACI Materials Journal,2009,106(4):357-366.
    [31]
    ZHANG Z G,YUVARAJ A,DI J,et al. Matrix design of light weight,high strength,high ductility ECC[J]. Construction and Building Materials,2019,210:188-197.
    [32]
    王冲,高淑玲. 基于正交试验设计的PVA-ECC基体组分对其力学性能影响的显著性水平研究[J]. 混凝土,2018(11):52-55.
    [33]
    COMMITTEE A. Standard test method for flexural toughness and first-crack strength of fiber reinforced concrete(using beam with third-point loading):ASTM C1018-97[S]. West Conshohocken:ASTM International,1997.
    [34]
    伍勇华,于浩,邓明科,等. 高延性混凝土弯曲性能的尺寸效应[J]. 硅酸盐通报,2018,37(4):1167-1173.
    [35]
    徐世烺,蔡向荣. 超高韧性纤维增强水泥基复合材料基本力学性能[J]. 水利学报,2009,40(9):1055-1063.
    [36]
    LI V C. Engineered cementitious composites(ECC):bendable concrete for sustainable and resilient infrastructure[M]. Berlin:Springer,2019.
    [37]
    CHOI W C,YUN H D,KANG J W,et al. Development of recycled strain-hardening cement-based composite(SHCC)for sustainable infrastructures[J]. Composites Part B,2012,43(2):627-635.
    [38]
    YU J,WU H L,LEUNG C K Y. Feasibility of using ultrahigh-volume limestone-calcined clay blend to develop sustainable medium-strength engineered cementitious composites(ECC)[J]. Journal of Cleaner Production,2020,262:343-354.
    [39]
    KEOLEIAN G A,KENDALL A,DETTLING J E,et al. Life cycle modeling of concrete bridge design:comparison of engineered cementitious composite link slabs and conventional steel expansion joints[J]. Journal of Infrastructure Systems,2012,11(1):51-60.
    [40]
    苏慈,田晓霞,曾田胜. C60高性能钢纤维混凝土制备和应用[J]. 混凝土,2009,11(4):120-122.
    [41]
    WANG S,LI V C. Engineered cementitious composites with high-volume fly ash[J]. ACI Materials Journal,2007,104(3):233-241.
    [42]
    YANG E H,YANG Y Z,LI V C. Use of high volumes of fly ash to improve ECC mechanical properties and material greenness[J]. ACI Materials Journal,2007,104(6):620-628.
    [43]
    YU R,SPIESZ P,BROUWERS H J H. Mix design and properties assessment of ultra-high performance fibre reinforced concrete(UHPFRC)[J]. Cement and Concrete Research,2014,56:29-39.
    [44]
    ZHANG Z G,YANG F,LIU J C,et al. Eco-friendly high strength,high ductility engineered cementitious composites(ECC)with substitution of fly ash by rice husk ash[J]. Cement and Concrete Research,2020,137:1-15.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (56) PDF downloads(4) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return