Citation: | ZHONG Xiaoping, XU Jiahao, LIU Yang, XIA Jin, ZHU Bingxi, ZHANG Jun, NI Keting. Effects of Loads and Erosion Dimensions on the Chloridion Transmission Rule in Concrete[J]. INDUSTRIAL CONSTRUCTION, 2024, 54(10): 205-214. doi: 10.3724/j.gyjzG24022706 |
[1] |
金伟良,赵羽习.混凝土结构耐久性[M].2版.北京:科学出版社,2014.
|
[2] |
付传清,屠一军,金贤玉,等.荷载作用对混凝土中氯盐传输的影响研究进展[J].硅酸盐学报,2015,43(4):400-409.
|
[3] |
WANG Y, ZHANG S, NIU D, et al. Effects of silica fume and blast furnace slag on the mechanical properties and chloride ion distribution of coral aggregate concrete[J]. Construction and Building Materials, 2019, 214: 648-658.
|
[4] |
孙明,鲍麒,丁贵军,等.粉煤灰对混凝土碳化及氯离子侵蚀规律的影响[J].公路,2021,66(8):295-299.
|
[5] |
童良玉,刘清风. 考虑多尺度非均质性的混凝土传输性能预测模型[J].建筑材料学报,2023,26(10):1062-1071.
|
[6] |
蔡栋兴,毕文彦,管学茂. 粗骨料对混凝土氯离子扩散影响的模拟与试验[J].建筑材料学报,2023,26(4):383-388.
|
[7] |
虞夏深.水灰比与掺合料对混凝土抗氯离子渗透性能的影响[J].大连大学学报,2017,38(6):47-49.
|
[8] |
彭建新,王华,张建仁,等.氯盐侵蚀下钢筋混凝土氯离子扩散系数试验及其概率分析[J].中国公路学报,2014,27(6):77-83.
|
[9] |
李永强,巴明芳,柳俊哲,等.干湿循环作用下水泥基复合材料抗氯离子侵蚀性能及其微观结构变化[J].复合材料学报,2017,34(12):2856-2865.
|
[10] |
韩学强,詹树林,徐强,等.干湿循环作用对混凝土抗氯离子渗透侵蚀性能的影响[J].复合材料学报,2020,37(1):198-204.
|
[11] |
DOUSTI A, RASHETNIA R, AHMADI B, et al. Influence of exposure temperature on chloride diffusion in concretes incorporating silica fume or natural zeolite[J]. Construction and Building Materials, 2013, 49: 393-399.
|
[12] |
邹洪波,罗小勇.压应力作用下混凝土中氯离子侵蚀性能研究[J].中国公路学报,2017,30(4):87-96.
|
[13] |
王海龙,张晓龙,俞秋佳,等.压荷载持续作用状态对混凝土中氯离子输运规律的影响[J].水利学报,2015,46(8):974-980.
|
[14] |
李树国.轴压荷载作用下再生混凝土水分与氯离子传输性能研究[D].青岛:青岛理工大学,2021.
|
[15] |
LIM C C, GOWRIPALAN N, SIRVUVATNANON V. Microcracking and chloride permeability of concrete under uniaxial compression[J]. Cement and Concrete Composites, 2000, 22(5): 353-360.
|
[16] |
孙继成,姚燕,王玲,等.应力作用下混凝土的氯离子渗透性[J].低温建筑技术,2011,33(3):1-3.
|
[17] |
WANG H L, DAI J G, SUN X Y, et al. Time-dependent and tress-dependent chloride diffusivity of concrete subjected to sustained compressive loading[J]. Journal of Materials in Civil Engineering, 2016, 28(8),04016059.
|
[18] |
XU J, LI F M, ZHAO J, et al. Model of time-dependent andstress-dependent chloride penetration of concrete under sustained axial pressure in the marine environment[J].Construction and Building Materials, 2018, 170: 207-216.
|
[19] |
陆春华,崔钊玮,张邵峰,等.粉煤灰对受弯开裂钢筋混凝土内氯离子侵蚀的影响[J].建筑材料学报,2013,16(5):787-793.
|
[20] |
陆春华,刘荣桂,崔钊玮,等.干湿交替作用下受弯开裂钢筋混凝土梁内氯离子侵蚀特性[J].土木工程学报,2014,47(12):82-90.
|
[21] |
孙玮琨,刘如泰,张俊芝,等.弯曲荷载对自然潮差环境下混凝土氯离子扩散性能影响的试验研究[J].工业建筑,2016,46(6):124-127
,81.
|
[22] |
WANG L C, WANG J Z. Mesoscale simulation of chloride diffusion in concrete subjected to flexural loading[J]. Advances in Structural Engineering, 2014, 17: 561-571.
|
[23] |
李鹤,徐志鹏,吴桐.荷载作用下混凝土氯离子侵蚀试验研究[J].低温建筑技术,2021,43(5):41-46.
|
[24] |
余红发,孙伟,麻海燕.混凝土氯离子扩散理论模型的研究Ⅰ:基于无限大体的非稳态齐次与非齐次扩散问题[J].南京航空航天大学学报,2009,41(2):276-280.
|
[25] |
鞠学莉,吴林键,刘明维,等.考虑氯离子侵蚀维度的钢筋混凝土码头服役寿命预测[J].材料导报,2021,35(24):24075-24080
,24087.
|
[26] |
GJRV O E. Durability design of concrete structures in severe environments[M]. New York: Taylor & Francis, 2009.
|
[27] |
张伟平,张庆章,顾祥林,等.环境条件和应力水平对混凝土中氯离子传输的影响[J].江苏大学学报,2013,34(1):101-106.
|
[28] |
The European Union-Brite Eu Ram Ⅲ. General guide lines for durability design and redesign:BE95-1347[S].Bruxelles:Brite-Euram, Dura Crete, 2000.
|