Source Journal of Chinese Scientific and Technical Papers
Included as T2 Level in the High-Quality Science and Technology Journals in the Field of Architectural Science
Core Journal of RCCSE
Included in the CAS Content Collection
Included in the JST China
Indexed in World Journal Clout Index (WJCI) Report
Zhang Tiejun, Yan Yuelan. STUDY ON LOCALIZATION OF MANUFACTURE OF UNDERRELAXATION PRESTRESSED STEEL SHANDS FOR CONTAINMENT OF Ling'ao NUCLEAR POWER PLANT (PHASE-Ⅱ) AND ITS USE[J]. INDUSTRIAL CONSTRUCTION, 2009, 39(4): 61-66. doi: 10.13204/j.gyjz200904015
Citation: ZONG Zhongling, CEN Hang, MIAO Huiquan, HUANG Delong, TANG Aiping, LIU Qiang. Research Progress on Dynamic Response and Seismic Resistance of Helical Pile Foundations[J]. INDUSTRIAL CONSTRUCTION, 2024, 54(2): 133-143. doi: 10.3724/j.gyjzG23122904

Research Progress on Dynamic Response and Seismic Resistance of Helical Pile Foundations

doi: 10.3724/j.gyjzG23122904
  • Received Date: 2023-12-29
    Available Online: 2024-04-23
  • In order to comprehensively understand the application and research status of helical piles in the field of seismic resistance, the software CiteSpace was used to analyze relevant literature in CNKI and WOS databases. The conclusions are as follows: 1) in terms of testing, early researchers studied the horizontal and lateral dynamic responses of helical piles through field experiments. After that, scholars studied the seismic response of helical piles through shaking table tests. 2) in terms of theory, most foreign scholars use a combination of numerical calculations and shaking table tests to study the dynamic performance; domestic scholars mainly focus on the horizontal vibration and vertical vibrations of helical piles. 3) in terms of numerical simulation, the research is mainly conducted through numerical simulation software such as OpenSees. In addition, the latest research progress, existing problems, opinions and suggestions for future research on the seismic performance of helical piles were discussed.
  • [1]
    MOHAJERANI A, BOSNJAK D, BROMWICH D. Analysis and design methods of screw piles:a review[J]. Soils and Foundations, 2016, 56(1):115-128.
    [2]
    董天文,梁力,黄连壮,等.螺旋桩基础抗拔试验研究[J].岩土力学, 2009, 30(1):186-190.
    [3]
    张国峰,尹军杰,陈程,等.螺旋桩安装扭矩计算方法与验证[J].建筑结构, 2022, 52(增刊2):2567-2571.
    [4]
    宗钟凌,庄潇轩,黄蕴晗,等.压力注浆螺旋钢管桩抗拔承载性能试验研究[J].海洋工程, 2022, 40(1):160-166.
    [5]
    张玲,黄庆旭,任强,等.中国地震灾害管理政策的演变:基于1949-2018年法律法规文件的计量分析[J].自然灾害学报, 2020, 29(5):11-23.
    [6]
    PERKO H A. Helical piles:a practical guide to design and installation[M]. Hoboken:John Wiley&Sons, 2009.
    [7]
    CERATO A B, VARGAS T M, ALLRED S M. A critical review:state of knowledge in seismic behaviour of helical piles[J]. The Journal of the Deep Foundations Institute, 2017, 11(1):39-87.
    [8]
    李杰,陈超美. CiteSpace:科技文本挖掘及可视化[M].北京:首都经济贸易大学出版社, 2015:68-75.
    [9]
    El NAGGAR M H and ABDELGHANY Y. Seismic helical screw foundations systems[C]//Proceedings of the 60th Canadian Geotechnical Conference. Ottawa:2007.
    [10]
    El NAGGAR M H and ABDELGHANY Y. Helical screw piles (HSP) capacity for axial cyclic loadings in cohesive soils[C]//Proceedings of the 4th International Conference on Earthquake Geotechnical Engineering. Thessaloniki, Greece:2007.
    [11]
    ABDELGHANY Y. Monotonic and cyclic behavior of helical screw piles under axial and lateral loading[D]. London, Ontario, Canada:The University of Western Ontario (Canada), 2008.
    [12]
    El SHARNOUBY M M, El NAGGAR M H. Axial monotonic and cyclic performance of fibre-reinforced polymer (FRP)-steel fibre-reinforced helical pulldown micropiles (FRP-RHPM)[J]. Canadian Geotechnical Journal, 2012, 49(12):1378-1392.
    [13]
    ABDELGHANY Y, El NAGGAR M H. Full-scale field investigations and numerical analyses of innovative seismic composite fiber-reinforced polymer and reinforced grouted helical screw instrumented piles under axial and lateral monotonic and cyclic loadings[C]//Advances in Soil Dynamics and Foundation Engineering. Shanghai:2014:414-424.
    [14]
    ELKASABGY M, El NAGGAR M H, SAKR M. Full-scale vertical and horizontal dynamic testing of a double helix screw pile[C]//Proceedings of the 63rd Canadian Geotechnical Conference. Calgary, Alta:2010:12-16.
    [15]
    ELKASABGY M, SAKR M, ENG P. Field and theoretical dynamic response of vertically loaded helical and driven steel piles[C]//Proceedings of the 2011 Pan-Am CGS Geotechnical Conference. 2011:2-6.
    [16]
    张新春,白云灿,何泽群,等.砂土中螺旋锚基础水平振动特性的模型试验研究[J].应用力学学报, 2020, 37(2):601-606

    ,929-930.
    [17]
    吴斌,王贞,许国山,等.工程结构混合试验技术研究与应用进展[J].工程力学,2022,39(1):1-20.
    [18]
    王向英,王海丽,杨伟松,等.子结构技术在结构抗震试验研究中的应用[J].世界地震工程,2020,36(1):63-76.
    [19]
    邱法维,钱稼茹,陈志鹏.结构抗震实验方法[M].北京:科学出版社, 2000.
    [20]
    ELSAWY M K, EL NAGGAR M H, CERATO A, et al. Seismic performance of helical piles in dry sand from large-scale shaking table tests[J]. Gotechnique, 2019, 69(12):1071-1085.
    [21]
    ELSAWY M K, EL NAGGAR M H, CERATO A B, et al. Data reduction and dynamic p-y curves of helical piles from large-scale shake table tests[J/OL]. Journal of Geotechnical and Geoenvironmental Engineering, 2019, 145(10).[2023-12-29].https://ascelibrary.org/doi/10.1061/(ASCE) GT.1943-5606.0002146.
    [22]
    ORANG M J, MOTAMED R, TOTH J. Experimental evaluation of dynamic response of helical piles in dry sand using 1g shaking table tests[M]//Earthquake Geotechnical Engineering for Protection and Development of Environment and Constructions. CRC Press, 2019:4226-4234.
    [23]
    SHAHBAZI M, CERATO A B, ALLRED S, et al. Damping characteristics of full-scale grouped helical piles in dense sands subjected to small and large shaking events[J]. Canadian Geotechnical Journal, 2020, 57(6):801-814.
    [24]
    SHAHBAZI M, CERATO A B, EL NAGGAR M H, et al. Evaluation of seismic soil-structure interaction of full-scale grouped helical piles in dense sand[J/OL]. International Journal of Geomechanics, 2020, 20(12).[2023-12-29]. https://ascelibrary.org/doi/10.1061/(ASCE) GM.1943-5622.0001876.
    [25]
    FAYEZ A F, EL NAGGAR M H, CERATO A B, et al. Seismic response of helical pile groups from shake table experiments[J/OL]. Soil Dynamics and Earthquake Engineering, 2022, 152.[2023-12-29].https://www.sciencedirect.com/science/article/pii/S0267726121004309.
    [26]
    FAYEZ A F, EL NAGGAR M H, CERATO A B, et al. Assessment of SSI effects on stiffness of single and grouped helical piles in dry sand from large shake table tests[J]. Bulletin of Earthquake Engineering, 2022, 20(7):3077-3116.
    [27]
    王成.螺旋桩抗震性能离心机振动台试验研究[D].烟台:烟台大学,2023.
    [28]
    陶虎,邵生俊,王正泓,等.结构性参数在黄土地基沉降计算中的应用研究[J].地震工程学报, 2020, 42(6):1604-1608

    ,1631.
    [29]
    TOKIMATSU K, KATSUMATA K. Liquefaction-induced damage to buildings in Urayasu City during the 2011 Tohoku Pacific Earthquake[C]//Proceedings of the International Symposium on Engineering. 2011:665-674.
    [30]
    RASOULI R, TOWHATA I, AKIMA T. Experimental evaluation of drainage pipes as a mitigation against liquefaction-induced settlement of structures[J/OL]. Journal of Geotechnical and Geoenvironmental Engineering, 2016, 142(9).[2023-12-29].https://ascelibrary.org/doi/10.1061/(ASCE) GT.1943-5606.0001509.
    [31]
    GARAKANI A A, SERJOIE K A. Ultimate bearing capacity of helical piles as electric transmission tower foundations in unsaturated soils:analytical, numerical, and experimental investigations[J]. International Journal of Geomechanics, 2022, 22(11).[2023-12-29].https://ascelibrary.org/doi/10.1061/(ASCE) GM.1943-5622.0002585.
    [32]
    NOWKANDEH M J, CHOOBBASTI A J. Numerical study of single helical piles and helical pile groups under compressive loading in cohesive and cohesionless soils[J]. Bulletin of Engineering Geology and the Environment, 2021, 80:4001-4023.
    [33]
    ALWALAN M F, EL NAGGAR M H. Finite element analysis of helical piles subjected to axial impact loading[J]. Computers and Geotechnics, 2020, 123.[2023-12-29].https://www.sciencedirect.com/science/article/pii/S0266352X20301609.
    [34]
    ORANG M J, BOUSHEHRI R, MOTAMED R, et al. Large-scale shake table experiment on the performance of helical piles in liquefiable soils[C]//Proceedings of the 45th DFI Annual Conference on Deep Foundations. Washington D.C.:2021.
    [35]
    ORANG M J, BOUSHEHRI R, MOTAMED R, et al. An experimental evaluation of helical piles as a liquefaction-induced building settlement mitigation measure[J/OL]. Soil Dynamics and Earthquake Engineering, 2021, 151.[2023-12-29].https://www.sciencedirect.com/science/article/pii/S0267726121004164.
    [36]
    李典庆,单晟治,吴强,等.地震动持时对可液化场地管道上浮反应影响分析[J].地震工程与工程振动, 2022, 42(4):43-52.
    [37]
    李鹏,刘光磊,宋二祥.饱和地基中地下结构地震反应若干问题研究[J].地震工程学报, 2014, 36(4):843-849.
    [38]
    黄茂松,边学成,陈育民,等.土动力学与岩土地震工程[J].土木工程学报, 2020, 53(8):64-86.
    [39]
    NOKANDE S, HADDAD A, JAFARIAN Y. Shaking table test on mitigation of liquefaction-induced tunnel uplift by helical pile[J/OL]. International Journal of Geomechanics, 2023, 23(1).[2023-12-29].https://ascelibrary.org/doi/10.1061/(ASCE) GM.1943-5622.0002607.
    [40]
    唐亮.液化场地桩-土动力相互作用p-y曲线模型研究[D].哈尔滨:哈尔滨工业大学, 2010.
    [41]
    MATLOCK H. Correlation for design of laterally loaded piles in soft clay[C]//Offshore Technology Conference. 1970.
    [42]
    EL NAGGAR M H, NOVAK M. Nonlinear lateral interaction in pile dynamics[J]. Soil Dynamics and Earthquake Engineering, 1995, 14(2):141-157.
    [43]
    ELKASABGY M, EL NAGGAR M H. Dynamic response of vertically loaded helical and driven steel piles[J]. Canadian Geotechnical Journal, 2013, 50(5):521-535.
    [44]
    ELKASABGY M, EL NAGGAR M H. Lateral vibration of helical and driven steel piles installed in clayey soil[J/OL]. Journal of Geotechnical and Geoenvironmental Engineering, 2018, 144(9).[2023-12-29].https://ascelibrary.org/doi/10.1061/(ASCE) GT.1943-5606.0001899.
    [45]
    张新春,白云灿,何泽群,等.桩-土相互作用的钢管螺旋桩水平动力响应研究[J].中国工程机械学报, 2019, 17(6):547-553.
    [46]
    王超哲,吴进,王立兴,等.黏弹性地基中螺旋桩水平动力特性[J].中南大学学报(自然科学版), 2022, 53(6):2279-2289.
    [47]
    朱昂.螺旋桩振动响应特性的模型试验研究[D].保定:华北电力大学,2020.
    [48]
    EL-SAWY M K. Seismic performance of steel helical piles[D]. London, Ontario, Canada:The University of Western Ontario (Canada), 2017.
    [49]
    HUSSEIN A F, EL NAGGAR M H. Seismic Helical Pile Response in non-liquefiable and Liquefiable Soil[J/OL]. International Journal of Geomechanics, 2022, 22(7).[2023-12-29].https://ascelibrary.org/doi/abs/10.1061/(ASCE) GM.1943-5622.0002378.
    [50]
    HUSSEIN A F, EL NAGGAR M H. Effect of model scale on helical piles response established from shake table tests[J/OL]. Soil Dynamics and Earthquake Engineering, 2022, 152.[2023-12-29].https://www.sciencedirect.com/science/article/pii/S0267726121004358.
    [51]
    HUSSEIN A F, EL NAGGAR M H. Dynamic performance of driven and helical piles in cohesive soil[J]. Acta Geotechnica, 2023, 18(3):1543-1568.
    [52]
    SHAHBAZI M, CERATO A B, HASSAN E M, et al. Seismic risk assessment of a steel building supported on helical pile groups[J]. Acta Geotechnica, 2022, 17(1):289-301.
    [53]
    HUSSEIN A F, EL NAGGAR M H. Fragility analysis of helical piles supporting bridge in different ground conditions[J/OL]. Journal of Bridge Engineering, 2022, 27(9).[2023-12-29].https://ascelibrary.org/doi/abs/10.1061/(ASCE) BE.1943-5592.0001919.
    [54]
    FAHMY A, EL NAGGAR M H. Cyclic axial performance of helical-tapered piles in sand[J]. The Journal of the Deep Foundations Institute, 2016, 10(3):98-110.
    [55]
    FAHMY A, EL NAGGAR M H. Axial performance of helical tapered piles in sand[J]. Geotechnical and Geological Engineering, 2017, 35:1549-1576.
    [56]
    HARNISH J, EL NAGGAR M H. Large-diameter helical pile capacity-torque correlations[J]. Canadian Geotechnical Journal, 2017, 54(7):968-986.
    [57]
    SCHIAVON J A, TSUHA C H C, THOREL L. Cyclic and post-cyclic monotonic response of a single-helix anchor in sand[J]. Gotechnique Letters, 2017, 7(1):11-17.
    [58]
    史旦达,俞快,毛逸瑶,等.松砂中双叶片螺旋锚上拔承载及土体变形特性试验研究[J].岩土力学,2022,43(11):3059-3072

    , 3082.
    [59]
    CHEN X J, FU Y, LIU Y. Random finite element analysis on uplift bearing capacity and failure mechanisms of square plate anchors in spatially variable clay[J/OL]. Engineering Geology, 2022, 304.[2023-12-29].https://www.sciencedirect.com/science/article/pii/S0013795222001624.
    [60]
    CHENG P, LIU Y, LI Y P, et al. A large deformation finite element analysis of uplift behaviour for helical anchor in spatially variable clay[J/OL]. Computers and Geotechnics, 2022, 141.[2023-12-29].https://www.sciencedirect.com/science/article/pii/S0266352X21005231.
    [61]
    郝冬雪,王磊,陈榕,等.冻融循环下粉砂中螺旋锚抗拔稳定模型试验研究[J].岩土工程学报, 2023, 45(1):57-65.
    [62]
    刘志鹏,孔纲强,文磊,等.砂土地基中倾斜螺旋桩群桩上拔与水平承载特性模型试验[J].岩土力学, 2021, 42(7):1944-1950.
    [63]
    韦芳芳,邵盛,陈道申,等.黏土中倾斜螺旋桩的水平承载性能数值模拟及理论研究[J].东南大学学报(自然科学版), 2021, 51(3):463-472.
    [64]
    MCGANN C R, ARDUINO P, MACKENZIE-HELNWEIN P. Applicability of conventional py relations to the analysis of piles in laterally spreading soil[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2011, 137(6):557-567.
    [65]
    ELGAMAL A, YAN L, YANG Z, et al. Three-dimensional seismic response of Humboldt Bay bridge-foundation-ground system[J]. Journal of Structural Engineering, 2008, 134(7):1165-1176.
    [66]
    李雨润,陈华斌,强东峰,等.地震作用下不同厚度饱和砂土中直群桩结构动力响应试验研究[J].地震工程学报, 2019, 41(4):834-839

    ,852.
    [67]
    周恩全,伊思航,文艳,等.可液化倾斜场地中桩基动力响应振动台试验研究[J].地震工程学报,2020,42(3):732-741.
    [68]
    YANG Z J, ZHANG X R, YANG R, et al. Shake table modeling of pile foundation performance in laterally spreading frozen ground crust overlying liquefiable soils[J/OL]. Journal of Cold Regions Engineering, 2018, 32(4).[2023-12-29].https://ascelibrary.org/doi/10.1061/(ASCE) CR.1943-5495.0000171.
    [69]
    康景文,刘昌清,邓夷明,等.地震力作用下单排与双排桩支挡结构性状试验对比分析[J].地震工程学报, 2021, 43(1):195-204.
    [70]
    唐亮,刘鹏,刘书幸,等.碎石桩加固液化场地高桩码头抗震性能分析[J].地震工程学报, 2022, 44(2):336-343

    ,379.
    [71]
    李雨润,强东峰,邹泽,等.不同厚度饱和砂土中群桩结构动力响应试验研究[J].地震工程学报, 2018, 40(4):625-630.
    [72]
    SRIJAROEN C, HOY M, HORPIBULSUK S, et al. Soil-cement screw pile:alternative pile for low-and medium-rise buildings in soft Bangkok clay[J/OL]. Journal of Construction Engineering and Management, 2021, 147(2).[2023-12-29].https://ascelibrary.org/doi/10.1061/(ASCE) CO.1943-7862.0001988.
    [73]
    ALDAEEF A A, RAYHANI M T. Pull-out capacity and creep behavior of helical piles in frozen ground[J/OL]. Journal of Geotechnical and Geoenvironmental Engineering, 2020, 146(12).[2023-12-29].https://ascelibrary.org/doi/10.1061/(ASCE) GT.1943-5606.0002405.
    [74]
    HUANG Y, ZHUANG X, WANG P, et al. Axial behavior of pressure grouted helical piles installed in marine soft clay based on full-scale field tests[J]. Geotechnical and Geological Engineering, 2022, 40(12):5799-5812.
    [75]
    MANSOUR M A, EL NAGGAR M H. Optimization of grouting method and axial performance of pressure-grouted helical piles[J]. Canadian Geotechnical Journal, 2022, 59(5):702-714.
    [76]
    FLEMING B J, SRITHARAN S, MILLER G A, et al. Full-scale seismic testing of piles in improved and unimproved soft clay[J]. Earthquake Spectra, 2016, 32(1):239-265.
  • Relative Articles

    [1]ZHOU Zhijun, TIAN Yeqing, ZHANG Mingyi, WANG Kangchao, ZHU Shanshan. Analysis on Bearing Characteristics of Pile Groups with Post-Grouting at Pile Ends in Loess Areas[J]. INDUSTRIAL CONSTRUCTION, 2024, 54(3): 182-190. doi: 10.3724/j.gyjzG22090209
    [2]ZHOU Peng, MA Hailong. NUMERICAL ANALYSIS ON LOAD TRANSFER OF TENSILE PILES AND BOTTOM-UPLIFTED PILES[J]. INDUSTRIAL CONSTRUCTION, 2021, 51(3): 147-152. doi: 10.13204/j.gyjzG20040901
    [3]MA Hailong, BAO Yanran, MA Yufei, YAO Wenhong. LOAD-TRANSFER LAWS OF A SINGLE PILE AND DETERMINATION OF REASONABLE POSITIONS FOR GROUTING ON PILE SIDES[J]. INDUSTRIAL CONSTRUCTION, 2021, 51(9): 173-176,196. doi: 10.13204/j.gyjzG20091705
    [4]Chen Lanyun, Shu Zhong, Yi Nangai. NUMERICAL SIMULATION OF VERTICAL BEARING CAPACITY OF POST-GROUTING BORED PILES[J]. INDUSTRIAL CONSTRUCTION, 2011, 41(7): 78-81. doi: 10.13204/j.gyjz201107018
    [5]Qiang Xiaojun, Wan Changhong, Jiang Huihuang. ANALYSIS AND COMPARISON OF MODEL TEST REINFORCED EMBANKMENT BY PILE NET WITH PILE CAP[J]. INDUSTRIAL CONSTRUCTION, 2009, 39(5): 75-80. doi: 10.13204/j.gyjz200905016
    [6]Shen Baohan, Wang Haiyan, Liu Zhenliang, He Dexin. TEST STUDY OF DX PILE WITH FOUR BULBS AT XI'AN SXD PROJECT[J]. INDUSTRIAL CONSTRUCTION, 2009, 39(2): 1-7. doi: 10.13204/j.gyjz200902001
    [7]Shen Baohan. DX PILE AND ITS SEVERAL PROBLEMS OF VERTICAL BEARING CAPACITIES[J]. INDUSTRIAL CONSTRUCTION, 2009, 39(8): 84-95. doi: 10.13204/j.gyjz200908022
    [8]Dong Jinrong. INFLUENCE OF PILE BOTTOM SLIME ON SKIN FRICTION AND BEARING CAPACITY ESTIMATION TO PILE[J]. INDUSTRIAL CONSTRUCTION, 2009, 39(4): 93-97. doi: 10.13204/j.gyjz200904021
    [9]Yi Yaolin, Liu Songyu. NUMERICAL ANALYSIS OF BEHAVIOR OF T-SHAPED CEMENT-SOIL DEEP MIXING PILE COMPOSITE FOUNDATION UNDER EMBANKMENT LOADS[J]. INDUSTRIAL CONSTRUCTION, 2008, 38(11): 63-68. doi: 10.13204/j.gyjz200811016
    [10]Shen Baohan, Sun Junping, Wang Yan. THE CALCULATION OF VERTICAL COMPRESSIONAL BEARING CAPACITY OF DX PILE[J]. INDUSTRIAL CONSTRUCTION, 2008, 38(5): 18-22. doi: 10.13204/j.gyjz200805004
    [11]Shen Baohan. THE CHARACTERISTICS OF LOAD TRANSFER OF DX PILES[J]. INDUSTRIAL CONSTRUCTION, 2008, 38(5): 5-12. doi: 10.13204/j.gyjz200805002
    [12]Luo Chunbo, Zhu Xiangrong, Kong Qinghua, Sun Jinyue. PILE-SOIL INTERACTION ANALYSIS OF O-CELL TESTING PILE BASED ON ELASTIC THEORY[J]. INDUSTRIAL CONSTRUCTION, 2007, 37(8): 60-63. doi: 10.13204/j.gyjz200708016
    [13]Zhang Shimin, Yu Feng. LOAD TRANSFER AND BEARING CAPACITY OF PILES JACKED INTO SANDY DEPOSITS[J]. INDUSTRIAL CONSTRUCTION, 2007, 37(5): 61-64. doi: 10.13204/j.gyjz200705016
    [14]Peng Fuming, Yue Qingrui, Hao Jiping, Yang Yongxin. LOAD TRANSFER ANALYSIS OF STEEL STRUCTURES REPAIRED WITH FRP[J]. INDUSTRIAL CONSTRUCTION, 2005, 35(8): 26-30,109. doi: 10.13204/j.gyjz200508006
    [15]Pei Jie, Shui Weihou, Cao Hui. NEW MODEL OF LONG PILE LOAD TRANSFER FOR SOFT FOUNDATION IN SHANGHAI[J]. INDUSTRIAL CONSTRUCTION, 2005, 35(7): 50-54,49. doi: 10.13204/j.gyjz200507015
    [16]Li Haiwang, Ju Yuwen, Zhao Mingwei, Liang Renwang. ANALYSIS AND FIELD STATIC LOADING TESTS OF CAST-IN-PLACE PILES WITH BRANCHES AND PLATES[J]. INDUSTRIAL CONSTRUCTION, 2004, 34(3): 21-23. doi: 10.13204/j.gyjz200403006
    [17]Wu Xiongzhi, An Xinzheng, Wu Ruizhi. STUDY ON BEARING MECHANISM OF SOIL-CEMENT PILE[J]. INDUSTRIAL CONSTRUCTION, 2004, 34(6): 42-43,41. doi: 10.13204/j.gyjz200406014
    [18]Chun Lun, Wang Haiyan, Shen Baohan, He Dexin, Sun Junping. FULL-SCALE TEST STUDY ON UNIT SHAFT RESISTANCE AND UNIT END RESISTANCE OF DX PILES CAST-IN-SITU[J]. INDUSTRIAL CONSTRUCTION, 2004, 34(3): 15-18,39. doi: 10.13204/j.gyjz200403004
    [19]Chen Lun, Wang Haiyan, Shen Baohan, He Dexin, Sun Junping. FULL-SCALE TEST STUDY ON BEARING MECHANISM AND LOAD TRANSMISSION MODE OF DX PILES CAST-IN-SITU[J]. INDUSTRIAL CONSTRUCTION, 2004, 34(3): 5-8. doi: 10.13204/j.gyjz200403002
  • Created with Highcharts 5.0.7Amount of accessChart context menuAbstract Views, HTML Views, PDF Downloads StatisticsAbstract ViewsHTML ViewsPDF Downloads2024-042024-052024-062024-072024-082024-092024-102024-112024-122025-012025-022025-0302.557.51012.515
    Created with Highcharts 5.0.7Chart context menuAccess Class DistributionFULLTEXT: 18.9 %FULLTEXT: 18.9 %META: 81.1 %META: 81.1 %FULLTEXTMETA
    Created with Highcharts 5.0.7Chart context menuAccess Area Distribution其他: 8.5 %其他: 8.5 %China: 5.7 %China: 5.7 %北京: 4.7 %北京: 4.7 %十堰: 0.9 %十堰: 0.9 %南京: 0.9 %南京: 0.9 %嘉兴: 0.9 %嘉兴: 0.9 %常州: 0.9 %常州: 0.9 %张家口: 5.7 %张家口: 5.7 %扬州: 2.8 %扬州: 2.8 %杭州: 1.9 %杭州: 1.9 %温州: 0.9 %温州: 0.9 %漯河: 4.7 %漯河: 4.7 %芒廷维尤: 31.1 %芒廷维尤: 31.1 %芝加哥: 0.9 %芝加哥: 0.9 %西宁: 17.9 %西宁: 17.9 %西雅图: 0.9 %西雅图: 0.9 %连云港: 1.9 %连云港: 1.9 %邯郸: 0.9 %邯郸: 0.9 %郑州: 2.8 %郑州: 2.8 %阳泉: 4.7 %阳泉: 4.7 %其他China北京十堰南京嘉兴常州张家口扬州杭州温州漯河芒廷维尤芝加哥西宁西雅图连云港邯郸郑州阳泉

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (79) PDF downloads(4) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return