Source Journal of Chinese Scientific and Technical Papers
Included as T2 Level in the High-Quality Science and Technology Journals in the Field of Architectural Science
Core Journal of RCCSE
Included in the CAS Content Collection
Included in the JST China
Indexed in World Journal Clout Index (WJCI) Report
ZHAO Jiacheng, LUO Yuxuan, ZHANG Daobo, BAO Charun, FENG Peng. A Novel Approach for Martian Base Construction Using In-Situ Resources[J]. INDUSTRIAL CONSTRUCTION, 2024, 54(1): 102-114. doi: 10.3724/j.gyjzG23092901
Citation: GUO Jianqiang. Influence of Silica Fume Content on the Basic Mechanical Properties of Low-Heat Portland Cement Concrete[J]. INDUSTRIAL CONSTRUCTION, 2024, 54(4): 195-199. doi: 10.3724/j.gyjzG23121118

Influence of Silica Fume Content on the Basic Mechanical Properties of Low-Heat Portland Cement Concrete

doi: 10.3724/j.gyjzG23121118
  • Received Date: 2023-12-11
    Available Online: 2024-05-29
  • With the wide application of low-heat Portland cement in hydraulic projects, higher requirements are put forward for the mechanical properties of low-heat Portland cement concrete. In this study, the underwater steel ball method was used to quantify the influence of silica fume content (0, 3% and 5%) on the basic mechanical properties and other mechanical properties of low-heat Portland cement concrete. The results showed that the addition of silica fume could effectively improve the abrasion resistance of low-heat Portland cement concrete, which increased by 12.2% when the content was 3%, and increased by 14.6% when the content was 5%. Compared to concrete without adding silicon powder, when 3% silica fume was added, the compressive strength and split tensile strength of low-heat Portland concrete were respectively reduced by about 3.5%-6.0%, 3.8%-11.1%; axial tensile properties (axial tensile strength and ultimate tensile value) increased by about 7.0%; when 5% silica fume was added, the compressive strength, splitting tensile strength and axial tensile properties could be respectively increased by about 3.6%-7.0%, 2.8%-3.5%, 6.9%-14.8%. Therefore, a relatively ideal overall performance could be obtained when the content of silica fume was 5%.
  • [1]
    余舟,王磊,杨华全,等.中低热水泥混凝土抗冲耐磨及抗裂性能试验研究[J].人民长江, 2018, 49(增刊2):238-242.
    [2]
    杨华全,李文伟,王迎春,等.低热硅酸盐水泥在三峡工程中的应用[J].人民长江, 2007, 38(1):10-13.
    [3]
    孙明伦,胡泽清,石妍,等.低热硅酸盐水泥在泄洪洞工程中的应用研究[J].人民长江, 2011, 42(增刊2):157-159.
    [4]
    陈荣,娄鑫.低热硅酸盐水泥在白鹤滩水电站导流洞工程中的应用[J].水利水电技术, 2015, 46(增刊2):1-4.
    [5]
    LIU Y W. Improving the abrasion resistance of hydraulic-concrete containing surface crack by adding silica fume[J]. Construction&Building Materials, 2007, 21(5):972-977.
    [6]
    HUI L, ZHANG M H, OU J P. Abrasion resistance of concrete containing nano-particles for pavement[J]. Wear, 2006, 260(12):1262-1266.
    [7]
    YEN T, HSU T H, LIU Y W. Influence of class F fly ash on the abrasion-erosion resistance of high-strength concrete[J]. Construction&Building Materials, 2007, 21(2):458-463.
    [8]
    YAZICIŞ,İNAN G. An investigation on the wear resistance of high strength concretes[J]. Wear, 2006, 260(6):615-618.
    [9]
    CAI X, ZHEN H, TANG S, et al. Abrasion erosion characteristics of concrete made with moderate heat Portland cement, fly ash and silica fume using sandblasting test[J]. Construction&Building Materials, 2016, 127:804-814.
    [10]
    杨进忠,王璟玉,张立勇,等.硅粉高性能混凝土抗冲磨试验研究[J].人民黄河, 2009, 31(6):102-103.
    [11]
    王磊,何真,杨华全,等.硅粉增强混凝土抗冲磨性能的微观机理[J].水利学报, 2013, 44(1):111-118.
    [12]
    蔡新华,何真,查进,等.冲磨速率和角度对海工混凝土抗冲磨性能的影响[J].建筑材料学报, 2013, 16(5):782-786.
    [13]
    余舟,王磊,杨华全.不同掺合料对水工混凝土抗冲磨性能的影响研究[J].混凝土, 2019(6):96-99.
    [14]
    KOUMPOURI D, ANGELOPOULOS G N. Effect of boron waste and boric acid addition on the production of low energy belite cement[J]. Cement and Concrete Composites, 2016, 68:1-8.
    [15]
    JANG J G, LEE H K. Microstructural densification and CO2 uptake promoted by the carbonation curing of belite-rich Portland cement[J]. Cement&Concrete Research, 2016, 82:50-57.
    [16]
    STANĚK T, SULOVSKÝ P. Active low-energy belite cement[J]. Cement and Concrete Research, 2015, 68:203-210.
    [17]
    CHEN Y L, LIN C J, KO M S, et al. Characterization of mortars from belite-rich clinkers produced from inorganic wastes[J]. Cement&Concrete Composites, 2011, 33(2):261-266.
    [18]
    WANG L, YANG H Q, DONG Y, et al. Environmental evaluation, hydration, pore structure, volume deformation and abrasion resistance of low heat Portland (LHP) cement-based materials[J]. Journal of Cleaner Production, 2018, 203(1):540-558.
    [19]
    WANG L, DONG Y, ZHOU S H, et al. Energy saving benefit, mechanical performance, volume stabilities, hydration properties and products of low heat cement-based materials[J]. Energy&Buildings, 2018, 170(6):157-169.
    [20]
    WANG L, JIN M M, WU Y H, et al. Hydration, shrinkage, pore structure and fractal dimension of silica fume modified low heat Portland cement-based materials[J/OL]. Construction and Building Materials, 2021, 272(2)[2020-12-01] https://doi.org/10.1016/j.conbuildmat.2020.121952.
    [21]
    全国水泥制品标准化技术委员会.中热硅酸盐水泥、低热硅酸盐水泥:GB/T 200-2017[S].北京:中国标准出版社, 2017.
    [22]
    电力行业水电施工标准化技术委员会.水工混凝土掺用粉煤灰技术规范:DL/T 5055-2007[S].北京:中国标准出版社, 2007.
    [23]
    全国水泥制品标准化技术委员会.砂浆和混凝土用硅灰:GB/T 27690-2011[S].北京:中国标准出版社, 2011.
    [24]
    电力行业水电施工标准化技术委员会.水工混凝土施工规范:DL/T 5144-2015[S].北京:中国标准出版社, 2015.
    [25]
    电力行业水电施工标准化技术委员会.水工混凝土外加剂技术规程:DL/T 5100-2014[S].北京:中国标准出版社, 2014.
    [26]
    电力行业水电施工标准化技术委员会.水工混凝土试验规程:DL/T 5150-2017[S].北京:中国标准出版社, 2017.
    [27]
    张海洋,郭军,张旭慧,等.粉煤灰和硅粉对高性能混凝土抗压强度的影响[J].中外公路, 2014, 34(3):312-316.
    [28]
    PEDRO D, BRITO J D, EVANGELISTA L. Evaluation of highperformance concrete with recycled aggregates:Use of densified silica fume as cement replacement[J]. Construction and Building Materials, 2017, 147(8):803-814.
    [29]
    李清富,孙振华,张海洋.粉煤灰和硅粉对混凝土强度影响的试验研究[J].混凝土, 2011(5):77-79.
    [30]
    ZHANG P, LI Q F, ZHANG H Y. Combined effect of polypropylene fiber and silica fume on mechanical properties of concrete composite containing fly ash[J]. Journal of Reinforced Plastics and Composites, 2011, 30(16):1349-1358.
    [31]
    MASTALI M, DALVAND A. Use of silica fume and recycled steel fibers in self-compacting concrete (SCC)[J]. Construction and Building Materials, 2016, 125:196-209.
    [32]
    吴辉琴,封冠英培,陈宇良,等.外掺硅粉混凝土早龄期强度及弹性模量试验研究[J].混凝土, 2021(2):86-88, 92.
    [33]
    EMMANUEL R, RACHID C, AHMED L. Tensile behaviour of early age concrete:New methods of investigation[J]. Cement and Concrete Composites, 2015, 55:153-161.
    [34]
    杨林,宋帅奇,杨静.硅灰对塑性混凝土工作性能和强度的影响[J].混凝土, 2012(12):43-45, 49.
    [35]
    郭丽萍,雷东移,陈波,等.硅粉表面改性及其分散效果评价[J].表面技术, 2018, 47(7):146-151.
  • Relative Articles

    [1]FEI Zehua, LI Yueyan, KONG Liming. Research on Construction and Optimization of Lattice-Based Printing Based on Finite Element Analysis[J]. INDUSTRIAL CONSTRUCTION, 2024, 54(9): 219-226. doi: 10.3724/j.gyjzG23100912
    [2]WU Ying, LI Aiqun. Application and Circled Layer Scene Construction of Digital Twin Technology from Coupling Perspective of "City-Building-People"[J]. INDUSTRIAL CONSTRUCTION, 2023, 53(4): 180-189. doi: 10.13204/j.gyjzG23012403
    [3]WU Jiaxin, WANG Yu, WU Lei. Experimental Research on Mechanical Properties of In-Situ Printed Concrete Slabs[J]. INDUSTRIAL CONSTRUCTION, 2023, 53(10): 61-67,93. doi: 10.13204/j.gyjzG22092808
    [4]XUE Gang, ZHOU Haifeng, LIU Xiaowu, ZHANG Yue. EXPERIMENTAL STUDY ON BOND PROPERTIES BETWEEN RUBBER CONCRETE AND REBARS IN THE FREEZE-THAW ENVIRONMENT[J]. INDUSTRIAL CONSTRUCTION, 2021, 51(7): 107-112. doi: 10.13204/j.gyjzG19120306
    [5]SHI Qingxuan, WAN Shengmu. STUDY ON QUANTITATIVE MODEL OF BUILDABILITY PERFORMANCE OF 3D PRINTED CONCRETE[J]. INDUSTRIAL CONSTRUCTION, 2021, 51(6): 16-23. doi: 10.13204/j.gyjzG20120105
    [6]FENG Peng, BAO Charun, ZHANG Daobo, YUE Qingrui, QI Junfeng, ZUO Yang. CONSTRUCTION TECHNOLOGY FOR LUNAR BASES USING LUNAR IN-SITU RESOURCES[J]. INDUSTRIAL CONSTRUCTION, 2021, 51(1): 169-178. doi: 10.13204/j.gyjzG20090813
    [8]Hao Chibiao, Tie Ying. THE BUILDING DISMANTLING AND THE REUSE OF THE OLD BUILDING MATERIALS[J]. INDUSTRIAL CONSTRUCTION, 2012, 42(12): 13-16,52. doi: 10.13204/j.gyjz201212004
    [9]Jiang Jinyang, Sun Wei, Li Wenting, Wang Jing. DURABILITY OF STRUCTURAL CONCRETE UNDER THE EFFECT OF MULTI-FACTORS OF FATIGUE LOADING AND ENVIRONMENTAL FACTORS[J]. INDUSTRIAL CONSTRUCTION, 2010, 40(11): 6-8. doi: 10.13204/j.gyjz201011002
    [10]Wang Haichao, Li Yunfeng, Zhang Ximin. EFFECT OF INTERACTION BETWEEN LOADING AND ENVIRONMENT ON CORROSION FATIGUE OF REINFORCED CONCRETE BEAM[J]. INDUSTRIAL CONSTRUCTION, 2008, 38(2): 73-75,85. doi: 10.13204/j.gyjz200802020
    [11]Bao Yingdan. CONSTRUCTION OF A HARMONIOUS TECHNICAL INDUSTRY GARDEN AREA——DISCUSSION ON GUANGZHOU PILOT TEST BASE GARDEN AREA LAYOUT AND THE MONOMER DESIGN[J]. INDUSTRIAL CONSTRUCTION, 2008, 38(4): 1-4. doi: 10.13204/j.gyjz200804001
    [12]Xu Jiqing. ARCHITECTURAL EXPERESSION FOR CHARACTERISTICS OF BASE ENVIRONMENT--CREATION OF COMPREHENSIVE BUILDINGS FOR GRADUATE STUDENTS IN NEW CAMPUS OF HENAN UNIVERSITY[J]. INDUSTRIAL CONSTRUCTION, 2007, 37(9): 55-56,61. doi: 10.13204/j.gyjz200709011
    [13]Shen Ren, Chen Xi-rong, Xu Mao-ye. DESIGN AND CONSTRUCTION OF MULTI STOREY LOOM MILL BUILDINGS[J]. INDUSTRIAL CONSTRUCTION, 2007, 37(11): 32-33,60. doi: 10.13204/j.gyjz200711009
    [14]Mao Huasong, ZhanYan. ENVIRONMENTAL LANDSCAPE DESIGN OF FACTORY AREAS——INTRODUCTION OF THE LANDSCAPE DESIGN OF YONGER WEST PRODUCTION BASE[J]. INDUSTRIAL CONSTRUCTION, 2006, 36(11): 115-118. doi: 10.13204/j.gyjz200611029
    [15]Li Lin, Zhao Ning. THE GROWTH ARCHITECTURE AND FLOW SPACE——SCHEME OF NEW MATERIALS BUILDING AND PILOT-SCALE STUDY CENTER FOR ZHONGGUANCUN YONGFENG BASE[J]. INDUSTRIAL CONSTRUCTION, 2005, 35(10): 4-5. doi: 10.13204/j.gyjz200510002
  • Created with Highcharts 5.0.7Amount of accessChart context menuAbstract Views, HTML Views, PDF Downloads StatisticsAbstract ViewsHTML ViewsPDF Downloads2024-042024-052024-062024-072024-082024-092024-102024-112024-122025-012025-022025-0302.557.51012.5
    Created with Highcharts 5.0.7Chart context menuAccess Class DistributionFULLTEXT: 12.1 %FULLTEXT: 12.1 %META: 86.8 %META: 86.8 %PDF: 1.1 %PDF: 1.1 %FULLTEXTMETAPDF
    Created with Highcharts 5.0.7Chart context menuAccess Area Distribution其他: 4.3 %其他: 4.3 %三明: 1.4 %三明: 1.4 %上海: 2.9 %上海: 2.9 %伊利诺伊州: 1.4 %伊利诺伊州: 1.4 %北京: 4.3 %北京: 4.3 %台州: 2.9 %台州: 2.9 %嘉兴: 1.4 %嘉兴: 1.4 %天津: 2.9 %天津: 2.9 %常州: 1.4 %常州: 1.4 %廊坊: 4.3 %廊坊: 4.3 %成都: 1.4 %成都: 1.4 %扬州: 4.3 %扬州: 4.3 %昭通: 2.9 %昭通: 2.9 %杭州: 5.7 %杭州: 5.7 %武汉: 1.4 %武汉: 1.4 %温州: 2.9 %温州: 2.9 %湖州: 2.9 %湖州: 2.9 %漯河: 4.3 %漯河: 4.3 %烟台: 2.9 %烟台: 2.9 %石家庄: 2.9 %石家庄: 2.9 %福州: 1.4 %福州: 1.4 %绵阳: 1.4 %绵阳: 1.4 %芒廷维尤: 11.4 %芒廷维尤: 11.4 %芝加哥: 2.9 %芝加哥: 2.9 %衡阳: 2.9 %衡阳: 2.9 %西宁: 2.9 %西宁: 2.9 %西安: 4.3 %西安: 4.3 %运城: 7.1 %运城: 7.1 %郑州: 1.4 %郑州: 1.4 %重庆: 1.4 %重庆: 1.4 %长沙: 1.4 %长沙: 1.4 %随州: 1.4 %随州: 1.4 %驻马店: 1.4 %驻马店: 1.4 %其他三明上海伊利诺伊州北京台州嘉兴天津常州廊坊成都扬州昭通杭州武汉温州湖州漯河烟台石家庄福州绵阳芒廷维尤芝加哥衡阳西宁西安运城郑州重庆长沙随州驻马店

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (67) PDF downloads(2) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return