Source Journal for Chinese Scientific and Technical Papers
Core Journal of RCCSE
Included in JST China
Included in the Hierarchical Directory of High-quality Technical Journals in Architecture Science Field
Volume 54 Issue 9
Sep.  2024
Turn off MathJax
Article Contents
TIAN Liang, MENG Junliang, ZHAO Jian, FAN Lilong, WANG Yuning, ZHANG Chengzhi. Three-Dimensional Meso-Simulation of Concrete Fracture Performance Based on Cohesive Model[J]. INDUSTRIAL CONSTRUCTION, 2024, 54(9): 170-176. doi: 10.3724/j.gyjzG23120806
Citation: TIAN Liang, MENG Junliang, ZHAO Jian, FAN Lilong, WANG Yuning, ZHANG Chengzhi. Three-Dimensional Meso-Simulation of Concrete Fracture Performance Based on Cohesive Model[J]. INDUSTRIAL CONSTRUCTION, 2024, 54(9): 170-176. doi: 10.3724/j.gyjzG23120806

Three-Dimensional Meso-Simulation of Concrete Fracture Performance Based on Cohesive Model

doi: 10.3724/j.gyjzG23120806
  • Received Date: 2023-12-08
    Available Online: 2024-10-18
  • Modeling by micromechanics is an effective means to study the macroscopic mechanical properties of concrete. By using the ABAQUS finite element software and cohesive element, a three-dimensional mesoscopic model of concrete specimen with random aggregate distribution was established to simulate the failure state of concrete specimens under static and dynamic compression, and the crack growth state of each stage was compared with that obtained by experimental loading. Based on the effective numerical model, the differences of peak intensity and crack propagation under different loading rates were studied, and the damage evolution value was calculated. The results showed that the stress variation characteristics of the models at different stages were obvious, which were basically consistent with the macroscopic strength of concrete. The failure modes of different components were obviously different, and the compressive strength of internal aggregate was the highest at the beginning of failure. The failure state obtained by numerical simulation was basically consistent with the test results. The damage variables were calculated by the exponential evolution method based on energy parameters, and it was verified that the constitutive model based on brittle fracture could effectively predict the failure process of concrete specimens.
  • loading
  • [1]
    王娟, 王文超, 许耀群, 等. 纳米SiO2对橡胶混凝土断裂行为的影响[J]. 建筑材料学报, 2023, 26(7): 731-738.
    [2]
    郭利霞, 武铮, 钟凌, 等. 高强混凝土内养护效果的微观量化表征与分析[J]. 建筑材料学报, 2023, 26(7): 697-704.
    [3]
    LIHAO C, QI L, SUYING O, et al. Study on the fiber-matrix bonding properties of ultrahigh-performance concrete at multiple scales[J]. Journal of Materials in Civil Engineering, 2023, 35(9),04023317.
    [4]
    王宗敏, 邱志章. 混凝土细观随机骨料结构与有限元网格剖分[J]. 计算力学学报, 2005(6): 728-732.
    [5]
    金浏, 杜修力, 黄景琦. 多轴加载下混凝土细观破坏模拟的强度准则探讨[J]. 计算力学学报, 2015, 32(3): 322-331.
    [6]
    IRENEUSZ M,JERZY B. Quantitative assessment of the influence of tensile softening of concrete in beams under bending by numerical Simulations with XFEM and cohesive cracks[J]. Materials, 2022, 15(2),626.
    [7]
    YIBO Y,BAIXI C,YONG C, et al.Performances of concrete columns with modular UHPC permanent formworks under axial load[J]. International Journal of Concrete Structures and Materials, 2023, 17(1),38.
    [8]
    YU Q, CHEN Z Y, YANG J, et al. Numerical study of concrete dynamic splitting based on 3D realistic aggregatemesoscopic model[J]. Materials, 2021, 14(8),1948.
    [9]
    蔡渝新, 刘清风. 碱激发混凝土抗氯离子侵蚀性能的数值研究[J]. 建筑材料学报, 2023, 26(6): 596-603

    ,622.
    [10]
    FENT T T, JIA M K, XU W X, et al. Three-dimensional mesoscopic investigation of the compression mechanical properties of ultra-high performance concrete containing coarse aggregates[J]. Cement and Concrete Composites, 2022, 133,104678.
    [11]
    WANG Z L, ZHANG W, HUANG Y Q. Experimental and numerical analysis of the ribbed reinforced concrete fracture behavior based on the mesoscale FE model[J]. International Journal of Concrete Structures and Materials, 2023, 17,42.
    [12]
    LI B, WU C, WANG S N, et al. Monotonic and cyclic compressive behavior of ultra-high performance concrete with coarse aggregate: Experimental investigation and constitutive model[J]. Journal of Building Engineering, 2023, 68,106602.
    [13]
    ARMAN K, AKHAVEISSY A H, PIETRUSZCZAK S. Experimental and meso-scale investigation of size effect on fracture properties in three-point concrete beams (TPB)[J]. Theoretical and Applied Fracture Mechanics, 2023, 127,104026.
    [14]
    廖显东, 胡翔, 张士前,等. 后张预应力预制混凝土框架中节点的数值模拟[J]. 西南交通大学学报, 2020,55(6):1287-1296.
    [15]
    张煜航, 陈青青, 张杰,等.混凝土三维细观模型的建模方法与力学特性分析[J]. 爆炸与冲击, 2019, 39(5): 110-117.
    [16]
    霍琳颖, 毕继红, 赵云, 等.不同纤维长度的混杂钢纤维混凝土本构模型[J]. 建筑材料学报, 2022, 25(10): 1034-1039.
    [17]
    胡响, 武杰, 张宝虎. 基于内聚力模型的钢筋混凝土梁断裂模拟[J]. 科学技术与工程, 2021, 21(33): 14281-14286.
    [18]
    吴萍, 杜坤, 徐亦冬, 等. 基于脆性开裂模型的钢筋混凝土锈裂过程细观数值模拟[J]. 硅酸盐通报, 2018,37(8):2372-2377.
    [19]
    徐青, 周祥森, 程志诚. 基于Ansys的混凝土随机骨料模型及细观力学分析[J]. 武汉大学学报(工版), 2019, 52(12): 1035-1040,1047.
    [20]
    武亮, 王菁, 糜凯华, 等. 一种生成椭球形骨料的混凝土细观模型方法[J]. 混凝土, 2014(11): 64-69.
    [21]
    汪奔, 王弘, 张志强, 等. 三维随机凹凸型混凝土骨料细观建模方法研究[J]. 应用力学学报, 2018, 35(5): 1072-1076

    ,1187-1188.
    [22]
    毕树根, 於文欢, 糜凯华. 基于细观力学模型的三级配混凝土立方体试件单轴损伤数值分析[J]. 江西水利科技, 2022, 48(4): 265-269.
    [23]
    方秦, 张锦华, 还毅, 等. 全级配混凝土三维细观模型的建模方法研究[J]. 工程力学, 2013, 30(1): 14-21

    ,30.
    [24]
    DU W, YU F, QIU L, et al. Effect of steel fibers on tensile properties of ultra-high-performance concrete: a review[J]. Materials, 2024, 17,1108.
    [25]
    刘邦莉.混杂纤维对UHPC动态力学性能的影响研究[D]. 成都:西南科技大学, 2024.
    [26]
    冯滔滔,蒋金洋,刘志勇,等.机制砂超高性能混凝土的冲击压缩力学性能[J]. 硅酸盐学报, 2020, 48(8): 1177-1187.
    [27]
    中华人民共和国交通运输部. 公路工程水泥及水泥混凝土试验规程:JTG 3420—2020[S].北京:人民交通出版社,2020.
    [28]
    李庆斌. 混凝土断裂损伤力学[M]. 北京:科学出版社, 2017.
    [29]
    李朝红. 基于损伤断裂理论的混凝土破坏行为研究[D]. 成都:西南交通大学, 2012.
    [30]
    GAEDICKE C, ROESLER J, EVANGELISTA F. Three-dimensional cohesive crack model prediction of the flexural capacity of concrete slabs on soil[J]. Engineering Fracture Mechanics, 2012, 94:1-12.
    [31]
    谢浩. 基于内聚力模型的细观混凝土破坏过程及机理研究[D]. 北京:中国矿业大学, 2020.
    [32]
    吴贞杰, 夏晓舟, 章青. 黏聚单元嵌入技术及其在混凝土细观分析模型中的应用[J]. 河海大学学报(自然科学版), 2017, 45(6): 535-542.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (8) PDF downloads(0) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return