Citation: | TIAN Liang, MENG Junliang, ZHAO Jian, FAN Lilong, WANG Yuning, ZHANG Chengzhi. Three-Dimensional Meso-Simulation of Concrete Fracture Performance Based on Cohesive Model[J]. INDUSTRIAL CONSTRUCTION, 2024, 54(9): 170-176. doi: 10.3724/j.gyjzG23120806 |
[1] |
王娟, 王文超, 许耀群, 等. 纳米SiO2对橡胶混凝土断裂行为的影响[J]. 建筑材料学报, 2023, 26(7): 731-738.
|
[2] |
郭利霞, 武铮, 钟凌, 等. 高强混凝土内养护效果的微观量化表征与分析[J]. 建筑材料学报, 2023, 26(7): 697-704.
|
[3] |
LIHAO C, QI L, SUYING O, et al. Study on the fiber-matrix bonding properties of ultrahigh-performance concrete at multiple scales[J]. Journal of Materials in Civil Engineering, 2023, 35(9),04023317.
|
[4] |
王宗敏, 邱志章. 混凝土细观随机骨料结构与有限元网格剖分[J]. 计算力学学报, 2005(6): 728-732.
|
[5] |
金浏, 杜修力, 黄景琦. 多轴加载下混凝土细观破坏模拟的强度准则探讨[J]. 计算力学学报, 2015, 32(3): 322-331.
|
[6] |
IRENEUSZ M,JERZY B. Quantitative assessment of the influence of tensile softening of concrete in beams under bending by numerical Simulations with XFEM and cohesive cracks[J]. Materials, 2022, 15(2),626.
|
[7] |
YIBO Y,BAIXI C,YONG C, et al.Performances of concrete columns with modular UHPC permanent formworks under axial load[J]. International Journal of Concrete Structures and Materials, 2023, 17(1),38.
|
[8] |
YU Q, CHEN Z Y, YANG J, et al. Numerical study of concrete dynamic splitting based on 3D realistic aggregatemesoscopic model[J]. Materials, 2021, 14(8),1948.
|
[9] |
蔡渝新, 刘清风. 碱激发混凝土抗氯离子侵蚀性能的数值研究[J]. 建筑材料学报, 2023, 26(6): 596-603
,622.
|
[10] |
FENT T T, JIA M K, XU W X, et al. Three-dimensional mesoscopic investigation of the compression mechanical properties of ultra-high performance concrete containing coarse aggregates[J]. Cement and Concrete Composites, 2022, 133,104678.
|
[11] |
WANG Z L, ZHANG W, HUANG Y Q. Experimental and numerical analysis of the ribbed reinforced concrete fracture behavior based on the mesoscale FE model[J]. International Journal of Concrete Structures and Materials, 2023, 17,42.
|
[12] |
LI B, WU C, WANG S N, et al. Monotonic and cyclic compressive behavior of ultra-high performance concrete with coarse aggregate: Experimental investigation and constitutive model[J]. Journal of Building Engineering, 2023, 68,106602.
|
[13] |
ARMAN K, AKHAVEISSY A H, PIETRUSZCZAK S. Experimental and meso-scale investigation of size effect on fracture properties in three-point concrete beams (TPB)[J]. Theoretical and Applied Fracture Mechanics, 2023, 127,104026.
|
[14] |
廖显东, 胡翔, 张士前,等. 后张预应力预制混凝土框架中节点的数值模拟[J]. 西南交通大学学报, 2020,55(6):1287-1296.
|
[15] |
张煜航, 陈青青, 张杰,等.混凝土三维细观模型的建模方法与力学特性分析[J]. 爆炸与冲击, 2019, 39(5): 110-117.
|
[16] |
霍琳颖, 毕继红, 赵云, 等.不同纤维长度的混杂钢纤维混凝土本构模型[J]. 建筑材料学报, 2022, 25(10): 1034-1039.
|
[17] |
胡响, 武杰, 张宝虎. 基于内聚力模型的钢筋混凝土梁断裂模拟[J]. 科学技术与工程, 2021, 21(33): 14281-14286.
|
[18] |
吴萍, 杜坤, 徐亦冬, 等. 基于脆性开裂模型的钢筋混凝土锈裂过程细观数值模拟[J]. 硅酸盐通报, 2018,37(8):2372-2377.
|
[19] |
徐青, 周祥森, 程志诚. 基于Ansys的混凝土随机骨料模型及细观力学分析[J]. 武汉大学学报(工版), 2019, 52(12): 1035-1040,1047.
|
[20] |
武亮, 王菁, 糜凯华, 等. 一种生成椭球形骨料的混凝土细观模型方法[J]. 混凝土, 2014(11): 64-69.
|
[21] |
汪奔, 王弘, 张志强, 等. 三维随机凹凸型混凝土骨料细观建模方法研究[J]. 应用力学学报, 2018, 35(5): 1072-1076
,1187-1188.
|
[22] |
毕树根, 於文欢, 糜凯华. 基于细观力学模型的三级配混凝土立方体试件单轴损伤数值分析[J]. 江西水利科技, 2022, 48(4): 265-269.
|
[23] |
方秦, 张锦华, 还毅, 等. 全级配混凝土三维细观模型的建模方法研究[J]. 工程力学, 2013, 30(1): 14-21
,30.
|
[24] |
DU W, YU F, QIU L, et al. Effect of steel fibers on tensile properties of ultra-high-performance concrete: a review[J]. Materials, 2024, 17,1108.
|
[25] |
刘邦莉.混杂纤维对UHPC动态力学性能的影响研究[D]. 成都:西南科技大学, 2024.
|
[26] |
冯滔滔,蒋金洋,刘志勇,等.机制砂超高性能混凝土的冲击压缩力学性能[J]. 硅酸盐学报, 2020, 48(8): 1177-1187.
|
[27] |
中华人民共和国交通运输部. 公路工程水泥及水泥混凝土试验规程:JTG 3420—2020[S].北京:人民交通出版社,2020.
|
[28] |
李庆斌. 混凝土断裂损伤力学[M]. 北京:科学出版社, 2017.
|
[29] |
李朝红. 基于损伤断裂理论的混凝土破坏行为研究[D]. 成都:西南交通大学, 2012.
|
[30] |
GAEDICKE C, ROESLER J, EVANGELISTA F. Three-dimensional cohesive crack model prediction of the flexural capacity of concrete slabs on soil[J]. Engineering Fracture Mechanics, 2012, 94:1-12.
|
[31] |
谢浩. 基于内聚力模型的细观混凝土破坏过程及机理研究[D]. 北京:中国矿业大学, 2020.
|
[32] |
吴贞杰, 夏晓舟, 章青. 黏聚单元嵌入技术及其在混凝土细观分析模型中的应用[J]. 河海大学学报(自然科学版), 2017, 45(6): 535-542.
|