Source Journal of Chinese Scientific and Technical Papers
Included as T2 Level in the High-Quality Science and Technology Journals in the Field of Architectural Science
Core Journal of RCCSE
Included in the CAS Content Collection
Included in the JST China
Indexed in World Journal Clout Index (WJCI) Report
Volume 55 Issue 11
Nov.  2025
Turn off MathJax
Article Contents
CHEN Yiyan, ZHANG Hao, GAO Yuanyuan, ZHOU Jianjie, ZHAO Qiu. Development Status of Torsional Effects in Composite Box Girders with Corrugated Steel Webs[J]. INDUSTRIAL CONSTRUCTION, 2025, 55(11): 89-96. doi: 10.3724/j.gyjzG23101921
Citation: CHEN Yiyan, ZHANG Hao, GAO Yuanyuan, ZHOU Jianjie, ZHAO Qiu. Development Status of Torsional Effects in Composite Box Girders with Corrugated Steel Webs[J]. INDUSTRIAL CONSTRUCTION, 2025, 55(11): 89-96. doi: 10.3724/j.gyjzG23101921

Development Status of Torsional Effects in Composite Box Girders with Corrugated Steel Webs

doi: 10.3724/j.gyjzG23101921
  • Received Date: 2023-10-19
    Available Online: 2026-01-06
  • Publish Date: 2025-11-20
  • Composite box girder bridges with corrugated steel webs have been widely used in bridge construction due to their light weight, aesthetic appearance, and rational structural behavior. However, due to the thin web, significant torsional effects occur under eccentric loads, which may compromise structural safety. To gain a comprehensive understanding of the torsional performance of such girders, this paper reviews research progress in four aspects: calculation theory, numerical simulations, model tests, and torsional capacity. Results show that it is feasible to apply Umansky’s second theory to calculate torsional stresses in composite box girders with corrugated steel webs. The elastoplastic theoretical model can predict the complete force curves of such girders under pure torsion; however, its computational efficiency and stability require further improvement. Although some studies have been conducted on concrete diaphragms, lining concrete, and web inclination, a unified calculation formula and design method are still lacking. Moreover, existing formulas for torsional capacity do not adequately account for dimensional parameters, structural configurations, and failure modes, indicating a need for further research.
  • loading
  • [1]
    陈宝春,黄卿维. 波形钢腹板PC箱梁桥应用综述[J]. 公路,2005(7):45-53.
    [2]
    曾强,彭更生,杜亚江. 悬臂施工波形钢腹板组合梁桥施工工艺[J]. 中国工程科学,2013,15(8):104-107.
    [3]
    贺国京,刘敬坤,易锦. 大跨径波纹钢腹板连续梁桥地震响应分析[J]. 中外公路,2014,34(3):80-83.
    [4]
    徐栋,尼颖升,赵瑜. 波形钢腹板梁桥空间网格分析方法[J]. 土木工程学报,2015,48(3):61-70.
    [5]
    ROSIGNOLI M. Prestressed concrete box girder bridges with folded steel plate webs[J]. Proceedings of the Institution of Civil Engineers-Structures and Buildings,1999,134:77-85.
    [6]
    马磊. 单箱多室波形钢腹板组合箱梁桥弯曲扭转性能研究[D]:南京:东南大学; 2014.
    [7]
    李宏江,叶见曙,万水,等. 波形腹板箱梁的扭转与畸变分析及试验研究[J]. 桥梁建设,2003(6):1-4.
    [8]
    王文. 波形钢腹板箱梁扭转效应和畸变效应的分析与模型试验研究[D]. 长沙:湖南大学,2008.
    [9]
    杨丙文,黎雅乐,万水,等. 波形钢腹板箱梁的扭转应力分析[J]. 华南理工大学学报(自然科学版),2012,40(2):19-22.
    [10]
    张德. 波形钢腹板PC组合箱梁扭转力学性能分析[D]. 兰州:兰州交通大学,2014.
    [11]
    张生虎. 波形钢腹板组合箱梁的扭转和畸变效应分析[D]. 兰州:兰州交通大学,2017.
    [12]
    岳阳,武志奎,李峰,等. 波形钢腹板-混凝土组合箱梁扭转效应分析[J]. 交通科技,2021(2):1-5.
    [13]
    马磊,万水,蒋正文. 单箱双室波形钢腹板箱梁扭转与畸变性能研究[J]. 中国公路学报,2016,29(10):77-85.
    [14]
    邓文琴,毛泽亮,刘朵,等. 单箱三室波形钢腹板悬臂梁扭转与畸变分析及试验研究[J]. 建筑结构学报,2020,41(2):173-181.
    [15]
    QIN A A,LIU S Z,GONG B J,et al. Torsional stress analysis of Improved composite box girder with corrugated steel webs[J]. Applied Sciences-Basel,2022,12(22),11571.
    [16]
    姚森. 变截面波形钢腹板PC组合箱梁扭转与畸变分析[D]. 南京:东南大学,2010.
    [17]
    刘保东,任红伟,李鹏飞,等. 波纹钢腹板组合箱梁偏心增大系数计算方法[J]. 公路交通科技. 2012,29(3):80-85.
    [18]
    贾慧娟. 变截面波形钢腹板PC组合箱梁桥结构性能研究[D] 南京:东南大学,2015.
    [19]
    DENG W Q,LIU D,PENG Z Q,et al. Behavior of cantilever composite girder bridges with CSWs under eccentric loading[J]. KSCE Journal of Civil Engineering,2021,25:3925-3939.
    [20]
    聂建国,唐亮. 基于固定角软化桁架模型的钢筋混凝土纯扭构件非线性分析[J]. 计算力学学报,2007,24(5):545-549.
    [21]
    项贻强,程坤. 基于转动角软化桁架模型的锈蚀钢筋混凝土纯扭构件非线性分析[J]. 建筑结构学报,2013,34(5):139-144.
    [22]
    HSU T T C,MO Y L. Softening of concrete in torsional members-theory and tests[J]. ACI Structural Journal,1985,82:290-303.
    [23]
    HSU T T C,MO Y L. Softening of Concrete in Torsional Members-Prestressed Concrete[J]. ACI Structural Journal,1985,82:603-615.
    [24]
    MO Y L,JENG C H,CHANG Y S. Torsional behavior of prestressed concrete box-girder bridges with corrugated steel webs[J]. ACI Structural Journal,2000,97:849-859.
    [25]
    聂建国,唐亮. 波形钢腹板PC组合箱梁纯扭性能的非线性分析[J]. 中国公路学报,2007(5):71-77.
    [26]
    KO H J,MOON J,SHIN Y W,et al. Non-linear analyses model for composite box-girders with corrugated steel webs under torsion[J]. Steel and Composite Structures. 2013,14:409-429.
    [27]
    沈孔健,万水,蒋正文,等. 波形钢腹板混凝土组合箱梁纯扭性能全过程分析[J]. 东南大学学报(自然科学版),2017,47(1):112-117.
    [28]
    SHEN K J,WAN S,MO Y L,et al. Behavior of single-box multi-cell box-girders with corrugated steel webs under pure torsion. Part Ⅱ:Theoretical model and analysis[J]. Thin-Walled Structures,2018,129:558-572.
    [29]
    ZHU Y B,WAN S,SHEN K J,et al. Theoretical study on the nonlinear performance of single-box multi-cell composite box-girder with corrugated steel webs under pure torsion[J]. Journal of Constructional Steel Research,2021,178(3),106487.
    [30]
    HSU T T C,ZHANG L X. Nonlinear analysis of membrane elements by fixed-angle softened-truss model[J]. ACI Structural Journal,1997,94:483-492.
    [31]
    PANG X B D,HSU T T C. Fixed angle softened truss model for reinforced concrete[J]. ACI Structural Journal,1996,93:197-207.
    [32]
    JIANG K B,DING Y,LIU Y W,et al. Calculation for torsion strength of prestressed concrete beams based on fixed-angle softened truss model[J]. Advances in Mechanical Engineering,2011,52-54:1032-1038.
    [33]
    丁勇,江克斌,周寅智,等. 波形钢腹板PC组合箱梁纯扭作用下抗扭承载力计算模型[J]. 计算力学学报,2013,30(1):137-142.
    [34]
    HSU T T C,ZHU R R H. Softened membrane model for reinforced concrete elements in shear[J]. ACI Structural Journal,2002,99(4):460-469.
    [35]
    ZHU R R H,HSU T T C. Poisson effect in reinforced concrete membrane elements[J]. ACI Structural Journal,2000,99:631-640.
    [36]
    MANSOUR M,HSU T T C. Behavior of reinforced concrete elements under cyclic shear I:experiments[J]. Journal of Structural Engineering,2005,131:44-53.
    [37]
    MANSOUR M,HSU T T C. Behavior of reinforced concrete elements under cyclic shear Ⅱ:theoretical model[J]. Journal of Structural Engineering,2005,131:54-65.
    [38]
    JENG C H,HSU T T C. A softened membrane model for torsion in reinforced concrete members[J]. Engineering Structures,2009,31:1944-1954.
    [39]
    SHEN K J,WAN S,MO Y L,et al. A softened membrane model for composite box-girders with corrugated steel webs under pure torsion[J]. Engineering Structures,2018,173:357-371.
    [40]
    周聪,李立峰,王连华,等. 基于软化薄膜元理论的波形钢腹板PC组合箱梁纯扭全过程分析[J]. 土木工程学报,2018,51(10):97-106.
    [41]
    周聪,李立峰. 波形钢腹板PC组合箱梁纯扭全过程分析模型[J]. 西南交通大学学报,2022,57(4):865-875.
    [42]
    SHEN K,WAN S,ZHU Y,et al. A softened membrane model for single-box multi-cell composite box-girders with corrugated steel webs under pure torsion[J]. Advances in Bridge Engineering. 2022,3:1-24.
    [43]
    MONDAL T G,PRAKASH S S. Effect of tension stiffening on the behaviour of square RC column under torsion[J]. Structural Engineering and Mechanics,2015,54:501-520.
    [44]
    周聪. 波形钢腹板组合箱梁扭转性能研究[D]. 长沙:湖南大学; 2019.
    [45]
    李宏江,叶见曙,万水,等. 波形钢腹板箱梁横隔板间距的研究[J]. 公路交通科技,2004,21(10):51-54.
    [46]
    SAYED-AHMED E Y. Plate girders with corrugated steel webs[J]. Engineering Journal,2005,42:1-13.
    [47]
    魏志新,梁艳梅. 横隔板间距对波形钢腹板桥抗扭性能的动静力影响分析[J]. 华北水利水电学院学报,2015,36(2):25-29.
    [48]
    任大龙,李文虎,万水. 横隔梁对波形钢腹板PC连续梁桥纵向正应力的影响研究[J]. 世界桥梁,2015,43(1):65-69.
    [49]
    NAKAMURA S,NARITA N. Bending and shear strengths of partially encased composite I-girders[J]. Journal of Constructional Steel Research,2003,59:1435-1453.
    [50]
    HE J,LIU Y Q,LIN Z F,et al. Shear behavior of partially encased composite I-girder with corrugated steel web:numerical study[J]. Journal of Constructional Steel Research,2012,79:166-182.
    [51]
    刘保东,胥睿,李祖硕,等. 内衬混凝土对波形钢腹板刚构桥扭转和畸变性能的影响[J]. 中国铁道科学. 2017,38(3):31-39.
    [52]
    DENG W Q,ZHANG J D,ZHOU M,et al. Experimental study of shear behaviour of concrete-encased non-prismatic girder with CSWs[J]. Magazine of Concrete Research,2019,71:989-1005.
    [53]
    胡旭辉. 波形钢腹板箱梁桥受力性能研究和设计计算[D]. 重庆:重庆交通大学,2006.
    [54]
    谭中法. 波形钢腹板箱梁桥的荷载横向分布系数研究[D]. 成都:西南交通大学,2015.
    [55]
    白博. 波形钢腹板-钢管混凝土组合结构箱梁桥的扭转和畸变研究[D]. 西安:西安建筑科技大学,2017.
    [56]
    张亚辉. 变截面宽箱双室波形钢腹板组合箱梁桥力学性能和参数分析[D]. 郑州:郑州大学,2020.
    [57]
    李宏江,叶见曙,万水,等. 波形钢腹板预应力混凝土箱梁的试验研究[J]. 中国公路学报,2004,17(4):31-36.
    [58]
    MASHAHIRO K,KOICHI W. Lateral-torstional buckling capacity of steel girders with corrugated web plates[J]. Doboku Gakkai Ronbunshuu A,2007,63:179-193.
    [59]
    王圣保. 波形钢腹板PC组合箱梁抗扭性能试验[J]. 建筑结构,2012,42(9):121-125.
    [60]
    江克斌,丁勇,杨建奎,等. 波形钢腹板PC组合箱梁纯扭作用下抗扭承载力试验研究[J]. 工程力学,2013,30(6):175-182.
    [61]
    李姣. 波纹腹板钢箱组合梁抗扭性能研究[D]. 郑州:郑州大学,2018.
    [62]
    张长青,安永日,安里鹏. 组合结构箱梁扭转极限承载力计算方法研究[J]. 重庆交通大学学报(自然科学版),2011,30(3):369-371.
    [63]
    陈汝扬,丁勇,陈立. 波形钢腹板PC组合箱梁的抗纯扭承载力计算方法研究[J]. 科技创新导报,2015,12(27):167-169.
    [64]
    董桔灿,吴庆雄,陈康明,等. 波形钢腹板(钢腹杆)-混凝土组合箱抗扭承载力试验与计算[J]. 工程力学,2016 33(11):220-230.
    [65]
    沈孔健. 单箱多室波形钢腹板组合箱梁扭转性能研究[D]. 南京:东南大学,2018.
    [66]
    American Concrete Institute. Building code requirements for structural concrete(ACI 318-14)and commentary:ACI 318R-14[S]. State of Michigan:American Concrete Institute,2018.
    [67]
    中华人民共和国住房和城乡建设部. 混凝土结构设计标准:GB/T 50010—2010[S]. 北京:中国建筑工业出版社,2024.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (24) PDF downloads(0) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return