Source Journal of Chinese Scientific and Technical Papers
Included as T2 Level in the High-Quality Science and Technology Journals in the Field of Architectural Science
Core Journal of RCCSE
Included in the CAS Content Collection
Included in the JST China
Indexed in World Journal Clout Index (WJCI) Report
Zhang Tiejun, Yan Yuelan. STUDY ON LOCALIZATION OF MANUFACTURE OF UNDERRELAXATION PRESTRESSED STEEL SHANDS FOR CONTAINMENT OF Ling'ao NUCLEAR POWER PLANT (PHASE-Ⅱ) AND ITS USE[J]. INDUSTRIAL CONSTRUCTION, 2009, 39(4): 61-66. doi: 10.13204/j.gyjz200904015
Citation: YANG Hangdong. Experimental Research on Seismic Performance of Prefabricated CFST Composite Column-Reinforced Concrete Beam Joints[J]. INDUSTRIAL CONSTRUCTION, 2024, 54(9): 133-140. doi: 10.3724/j.gyjzG23082308

Experimental Research on Seismic Performance of Prefabricated CFST Composite Column-Reinforced Concrete Beam Joints

doi: 10.3724/j.gyjzG23082308
  • Received Date: 2023-08-23
    Available Online: 2024-10-18
  • In order to study the seismic performance of prefabricated joints in underground space structures, a new type of prefabricated CFST composite column-reinforced concrete beam joint was designed and fabricated and compared with the cast-in-place CFST composite column-reinforced concrete beam joint. Quasi-static load tests were conducted on two types of joints. The hysteresis curves, skeleton scurves, stiffness degradation curves, energy dissipation capacity, ductility, and other indicators of the two types of joints were compared and analyzed. The results showed that both types of joints were subjected to bending failure in the plastic hinge area of the beam end and the ultimate displacement of the assembled joint was 47.6% higher than that of the cast-in-place joint, but the difference in ultimate bearing capacity between the two joints was not significant. The stiffness of the final joints was reached failure by about 10% of the initial stiffness, and the joints underwent significant nonlinear deformation and damage. The final cumulative total energy consumption of cast-in-place and prefabricated joints reached 35.69 kN·m and 58.77 kN·m, respectively. The prefabricated joint was greater than that of the cast-in-place joint, which was 1.65 times the cast-in-place joint. The yield and ultimate displacement of the prefabricated joint had increased by 30.68% and 32.47% respectively compared with the cast-in-place joint. The difference in yield and ultimate load between the two types of joints was not significant, and the ductility coefficients of prefabricated joints was slightly higher than cast-in-place joints. The ductility of the prefabricated joint was better than the cast-in-place joint.
  • [1]
    韩林海, 徐蕾. 带保护层方钢管混凝土柱耐火极限的试验研究[J]. 福州大学学报, 2000(6): 63-69.
    [2]
    程文瀼, 高仲学, 苏毅, 等. 钢骨混凝土柱框架节点的试验研究[J]. 建筑结构学报, 2002,23(2): 36-40.
    [3]
    范业庶. 钢管混凝土核心柱与预应力混凝土梁节点低周反复荷载试验研究[D]. 南宁:广西大学, 2002.
    [4]
    聂建国, 王宇航, 陶慕轩, 等. 钢管混凝土叠合柱-钢筋混凝土梁外加强环节点抗震性能试验研究[J]. 建筑结构学报, 2012, 33(7): 88-97.
    [5]
    谭文勇. 钢筋混凝土梁-钢管混凝土叠合柱外加强环式节点受力性能有限元分析[J]. 武汉理工大学学报, 2016, 38(3): 61-65.
    [6]
    ARAVIND R P S, JOANNA P S. Experimental study on reinforced concrete beam and composite column joint with square steel cage[J]. Emerging Trends in Advanced Science, 2014(622): 81-88.
    [7]
    周颖, 于海燕, 钱江, 等. 钢管混凝土叠合柱节点环梁试验研究[J]. 建筑结构学报, 2015, 36(2): 69-78.
    [8]
    王琨, 智海祥, 曹大富, 等. 预应力型钢混凝土梁-钢管混凝土叠合柱框架节点抗震性能试验研究[J]. 建筑结构学报, 2018, 39(12): 29-38.
    [9]
    王琨, 查志远, 刘宏潮, 等.预应力型钢混凝土梁-钢管混凝土叠合柱框架中节点受剪性能分析[J]. 工程力学, 2020, 37(8): 89-101.
    [10]
    廖飞宇, 赵剑, 尧国皇, 等. 钢管混凝土叠合柱-混凝土梁节点滞回性能的有限元分析[J]. 建筑钢结构进展, 2019, 21(5): 1-12

    ,19.
    [11]
    王静峰, 王翰斓, 郭磊, 等.预制钢管混凝土叠合柱与PEC梁螺栓连接节点受力性能分析[J]. 建筑钢结构进展, 2022, 24(7): 49-56.
    [12]
    凌育洪, 温新贵, 郑文丽, 等.新型叠合柱-混凝土梁边节点的受力性能试验研究[J]. 华南理工大学学报(自然科学版), 2022, 50(1): 38-49.
    [13]
    王素裹, 祁皑. 宽扁梁与普通梁框架结构实现"强柱弱梁"的对比研究[J]. 地震工程与工程振动, 2013, 33(6): 95-101.
    [14]
    刘庆文, 王方斌. 预应力混凝土扁梁框架节点抗震性能试验研究[J].地震工程与工程振动, 2016, 36(2): 42-48.
    [15]
    郭靳时, 胡新民. 钢筋混凝土扁梁边节点抗震性能拟静力试验研究[J]. 低温建筑技术, 2020, 42(3): 66-69.
    [16]
    范永龙. 钢筋混凝土框架宽扁梁-柱边节点抗震性能研究[D].合肥: 合肥工业大学, 2022.
    [17]
    JIANG Q, XUAN D C, CHONG X, et al. Seismic performance of RC interior wide beam-column joints[J]. Structures, 2023, 48: 373-389.
    [18]
    中华人民共和国住房和城乡建设部. 混凝土物理力学性能试验方法标准: GB/T 50081—2019 [S]. 北京: 中国建筑工业出版社, 2019.
    [19]
    全国钢标准化技术委员会. 钢筋混凝土用钢材试验方法: GB/T 28900—2012 [S]. 北京:中国标准出版社,2013.
    [20]
    中华人民共和国国家质量监督检验检疫总局. 金属材料 拉伸试验 第1部分:室温试验方法:GB/T 228—2021[S]. 北京: 中国标准出版社, 2021.
    [21]
    中华人民共和国住房和城乡建设部. 建筑抗震试验规程:JGJ/T 101—2015[S]. 北京: 中国建筑工业出版社,2015.
    [22]
    唐九如. 钢筋混凝土框架节点抗震 [M]. 南京: 东南大学出版社, 1989.
    [23]
    中华人民共和国住房和城乡建设部. 混凝土结构设计规范:GB 50010—2010[S]. 北京: 中国建筑工业出版社, 2010.
    [24]
    ZHANG J X,PEI Z H,RONG X. Experimental seismic study of an innovative precast steel-concrete composite beam-column joint[J].Soil Dynamics and Earthquake Engineering,2022,161,107420.
  • Relative Articles

    [1]ZHOU Zhijun, TIAN Yeqing, ZHANG Mingyi, WANG Kangchao, ZHU Shanshan. Analysis on Bearing Characteristics of Pile Groups with Post-Grouting at Pile Ends in Loess Areas[J]. INDUSTRIAL CONSTRUCTION, 2024, 54(3): 182-190. doi: 10.3724/j.gyjzG22090209
    [2]ZHOU Peng, MA Hailong. NUMERICAL ANALYSIS ON LOAD TRANSFER OF TENSILE PILES AND BOTTOM-UPLIFTED PILES[J]. INDUSTRIAL CONSTRUCTION, 2021, 51(3): 147-152. doi: 10.13204/j.gyjzG20040901
    [3]MA Hailong, BAO Yanran, MA Yufei, YAO Wenhong. LOAD-TRANSFER LAWS OF A SINGLE PILE AND DETERMINATION OF REASONABLE POSITIONS FOR GROUTING ON PILE SIDES[J]. INDUSTRIAL CONSTRUCTION, 2021, 51(9): 173-176,196. doi: 10.13204/j.gyjzG20091705
    [4]Chen Lanyun, Shu Zhong, Yi Nangai. NUMERICAL SIMULATION OF VERTICAL BEARING CAPACITY OF POST-GROUTING BORED PILES[J]. INDUSTRIAL CONSTRUCTION, 2011, 41(7): 78-81. doi: 10.13204/j.gyjz201107018
    [5]Qiang Xiaojun, Wan Changhong, Jiang Huihuang. ANALYSIS AND COMPARISON OF MODEL TEST REINFORCED EMBANKMENT BY PILE NET WITH PILE CAP[J]. INDUSTRIAL CONSTRUCTION, 2009, 39(5): 75-80. doi: 10.13204/j.gyjz200905016
    [6]Shen Baohan, Wang Haiyan, Liu Zhenliang, He Dexin. TEST STUDY OF DX PILE WITH FOUR BULBS AT XI'AN SXD PROJECT[J]. INDUSTRIAL CONSTRUCTION, 2009, 39(2): 1-7. doi: 10.13204/j.gyjz200902001
    [7]Shen Baohan. DX PILE AND ITS SEVERAL PROBLEMS OF VERTICAL BEARING CAPACITIES[J]. INDUSTRIAL CONSTRUCTION, 2009, 39(8): 84-95. doi: 10.13204/j.gyjz200908022
    [8]Dong Jinrong. INFLUENCE OF PILE BOTTOM SLIME ON SKIN FRICTION AND BEARING CAPACITY ESTIMATION TO PILE[J]. INDUSTRIAL CONSTRUCTION, 2009, 39(4): 93-97. doi: 10.13204/j.gyjz200904021
    [9]Yi Yaolin, Liu Songyu. NUMERICAL ANALYSIS OF BEHAVIOR OF T-SHAPED CEMENT-SOIL DEEP MIXING PILE COMPOSITE FOUNDATION UNDER EMBANKMENT LOADS[J]. INDUSTRIAL CONSTRUCTION, 2008, 38(11): 63-68. doi: 10.13204/j.gyjz200811016
    [10]Shen Baohan, Sun Junping, Wang Yan. THE CALCULATION OF VERTICAL COMPRESSIONAL BEARING CAPACITY OF DX PILE[J]. INDUSTRIAL CONSTRUCTION, 2008, 38(5): 18-22. doi: 10.13204/j.gyjz200805004
    [11]Shen Baohan. THE CHARACTERISTICS OF LOAD TRANSFER OF DX PILES[J]. INDUSTRIAL CONSTRUCTION, 2008, 38(5): 5-12. doi: 10.13204/j.gyjz200805002
    [12]Luo Chunbo, Zhu Xiangrong, Kong Qinghua, Sun Jinyue. PILE-SOIL INTERACTION ANALYSIS OF O-CELL TESTING PILE BASED ON ELASTIC THEORY[J]. INDUSTRIAL CONSTRUCTION, 2007, 37(8): 60-63. doi: 10.13204/j.gyjz200708016
    [13]Zhang Shimin, Yu Feng. LOAD TRANSFER AND BEARING CAPACITY OF PILES JACKED INTO SANDY DEPOSITS[J]. INDUSTRIAL CONSTRUCTION, 2007, 37(5): 61-64. doi: 10.13204/j.gyjz200705016
    [14]Peng Fuming, Yue Qingrui, Hao Jiping, Yang Yongxin. LOAD TRANSFER ANALYSIS OF STEEL STRUCTURES REPAIRED WITH FRP[J]. INDUSTRIAL CONSTRUCTION, 2005, 35(8): 26-30,109. doi: 10.13204/j.gyjz200508006
    [15]Pei Jie, Shui Weihou, Cao Hui. NEW MODEL OF LONG PILE LOAD TRANSFER FOR SOFT FOUNDATION IN SHANGHAI[J]. INDUSTRIAL CONSTRUCTION, 2005, 35(7): 50-54,49. doi: 10.13204/j.gyjz200507015
    [16]Li Haiwang, Ju Yuwen, Zhao Mingwei, Liang Renwang. ANALYSIS AND FIELD STATIC LOADING TESTS OF CAST-IN-PLACE PILES WITH BRANCHES AND PLATES[J]. INDUSTRIAL CONSTRUCTION, 2004, 34(3): 21-23. doi: 10.13204/j.gyjz200403006
    [17]Wu Xiongzhi, An Xinzheng, Wu Ruizhi. STUDY ON BEARING MECHANISM OF SOIL-CEMENT PILE[J]. INDUSTRIAL CONSTRUCTION, 2004, 34(6): 42-43,41. doi: 10.13204/j.gyjz200406014
    [18]Chun Lun, Wang Haiyan, Shen Baohan, He Dexin, Sun Junping. FULL-SCALE TEST STUDY ON UNIT SHAFT RESISTANCE AND UNIT END RESISTANCE OF DX PILES CAST-IN-SITU[J]. INDUSTRIAL CONSTRUCTION, 2004, 34(3): 15-18,39. doi: 10.13204/j.gyjz200403004
    [19]Chen Lun, Wang Haiyan, Shen Baohan, He Dexin, Sun Junping. FULL-SCALE TEST STUDY ON BEARING MECHANISM AND LOAD TRANSMISSION MODE OF DX PILES CAST-IN-SITU[J]. INDUSTRIAL CONSTRUCTION, 2004, 34(3): 5-8. doi: 10.13204/j.gyjz200403002
  • Created with Highcharts 5.0.7Amount of accessChart context menuAbstract Views, HTML Views, PDF Downloads StatisticsAbstract ViewsHTML ViewsPDF Downloads2024-042024-052024-062024-072024-082024-092024-102024-112024-122025-012025-022025-0302.557.51012.515
    Created with Highcharts 5.0.7Chart context menuAccess Class DistributionFULLTEXT: 18.9 %FULLTEXT: 18.9 %META: 81.1 %META: 81.1 %FULLTEXTMETA
    Created with Highcharts 5.0.7Chart context menuAccess Area Distribution其他: 8.5 %其他: 8.5 %China: 5.7 %China: 5.7 %北京: 4.7 %北京: 4.7 %十堰: 0.9 %十堰: 0.9 %南京: 0.9 %南京: 0.9 %嘉兴: 0.9 %嘉兴: 0.9 %常州: 0.9 %常州: 0.9 %张家口: 5.7 %张家口: 5.7 %扬州: 2.8 %扬州: 2.8 %杭州: 1.9 %杭州: 1.9 %温州: 0.9 %温州: 0.9 %漯河: 4.7 %漯河: 4.7 %芒廷维尤: 31.1 %芒廷维尤: 31.1 %芝加哥: 0.9 %芝加哥: 0.9 %西宁: 17.9 %西宁: 17.9 %西雅图: 0.9 %西雅图: 0.9 %连云港: 1.9 %连云港: 1.9 %邯郸: 0.9 %邯郸: 0.9 %郑州: 2.8 %郑州: 2.8 %阳泉: 4.7 %阳泉: 4.7 %其他China北京十堰南京嘉兴常州张家口扬州杭州温州漯河芒廷维尤芝加哥西宁西雅图连云港邯郸郑州阳泉

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (46) PDF downloads(1) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return