Source Journal for Chinese Scientific and Technical Papers
Core Journal of RCCSE
Included in JST China
Included in the Hierarchical Directory of High-quality Technical Journals in Architecture Science Field
Volume 54 Issue 4
Apr.  2024
Turn off MathJax
Article Contents
YANG Chunxia, CHEN Tao, ZHANG Yongtao, WAN Peng, WU Jun. Automatic Identification of Modal Parameters of Wind Turbine Towers Under Harmonic Excitation[J]. INDUSTRIAL CONSTRUCTION, 2024, 54(4): 134-141. doi: 10.3724/j.gyjzG23080713
Citation: YANG Chunxia, CHEN Tao, ZHANG Yongtao, WAN Peng, WU Jun. Automatic Identification of Modal Parameters of Wind Turbine Towers Under Harmonic Excitation[J]. INDUSTRIAL CONSTRUCTION, 2024, 54(4): 134-141. doi: 10.3724/j.gyjzG23080713

Automatic Identification of Modal Parameters of Wind Turbine Towers Under Harmonic Excitation

doi: 10.3724/j.gyjzG23080713
  • Received Date: 2023-08-07
    Available Online: 2024-05-29
  • The periodic excitation of wind turbines under operating conditions will generate harmonic disturbances with similar frequencies to the structural modes, which will affect the vibration level of the fundamental modes of the structure and the identification of the dynamic parameters. In order to effectively and continuously monitor the tower vibration status during operation, the covariance-driven stochastic subspace identification (Cov-SSI) method based on potential hierarchical agglomerative clustering (PHA) combined with the probability density function (PDF) was proposed for the automatic identification of modal parameters of wind turbine towers. Through the on-site vibration response test, the Cov-SSI method was firstly used to initially identify the tower structure modal parameters; secondly, the PHA method was introduced to improve the stability diagram, and the frequency and modal confidence criterion (MAC) distance matrix was defined for cleaning and clustering to automate the separation of different orders of modes; finally, the information of the clustered clusters was used to determine and eliminate the harmonic modes by the PDF method. The results showed that the proposed method could effectively separate and eliminate the harmonic components, realize the automatic identification of the modal parameters of wind turbine towers under operation, and provide a good engineering application value for the automated real-time monitoring of wind turbine safety operation.
  • loading
  • [1]
    DEVRIENDT C, MAGALHÃES F, WEIJTJENS W, et al. Structural health monitoring of offshore wind turbines using automated operational modal analysis[J]. Structural Health Monitoring, 2014, 13(6):644-659.
    [2]
    DONG X, LIAN J, WANG H. Vibration source identification of sffshore wind turbine structure based on optimized spectral kurtosis and ensemble empirical mode decomposition[J]. Ocean Engineering, 2019, 172:199-212.
    [3]
    魏煜锋,何维令,蒋祥增,等.高柔塔风电机组塔筒振源特性分析[J].振动与冲击, 2023, 42(2):189-196.
    [4]
    刘宇飞,辛克贵,樊健生,等.环境激励下结构模态参数识别方法综述[J].工程力学, 2014, 31(4):46-53.
    [5]
    CARNE T G, DOHRMANN C R. A model test design strategy for model correlation[C]//International Modal Analysis Conference. Nashville, United States:1995.
    [6]
    CARNE T G, JAMES G H. The inception of OMA in the development of modal testing technology for wind turbines[J]. Mechanical Systems and Signal Processing, 2010, 24(5):1213-1226.
    [7]
    JAMES G H, CARNE T G, LAUFFER J P. The natural excitation technique (NExT) for modal parameter extraction from operating wind turbines[J]. The International Journal of Analytical and Experimental Modal Analysis, 1995, 10:260-277.
    [8]
    董霄峰,练继建,杨敏,等.谐波干扰下海上风机结构工作模态识别[J].振动与冲击, 2015, 34(10):152-156

    , 172.
    [9]
    HU W, THÖNS S, ROHRMANN G R, et al. Vibration-based structural health monitoring of a wind turbine system. part I:resonance phenomenon[J]. Engineering Structures, 2015, 89:260-272.
    [10]
    PEETERS B. System Identification and damage detection in civil engineering[D]. Leuven:Catholic University Leuven, Department of Civil Engineering, 2000.
    [11]
    WAGNER G, LIMA R, SAMPAIO R. Modal identification of a light and flexible wind turbine blade under wind excitation[J]. Journal of Engineering Mathematics, 2022, 133(1):1-15.
    [12]
    赵艳,郑卫锋,王新武,等.环境激励下风机结构模态识别算法的对比[J].噪声与振动控制, 2022, 42(4):64-68

    , 92.
    [13]
    DONG X, LIAN J, YANG M,et al. Operational modal identification of offshore wind turbine structure based on modified stochastic subspace identification method considering harmonic interference[J]. Journal of Renewable&Sustainable Energy, 2014, 6(3):1649-1654.
    [14]
    MAGALHÃES F,ÁLVARO C, CAETANO E. Online automatic identification of the modal parameters of a long span arch bridge[J]. Mechanical Systems&Signal Processing, 2009, 23(2):316-329.
    [15]
    郑沛娟,林迪南,宗周红,等.基于图论聚类的随机子空间模态参数自动识别[J].东南大学学报(自然科学版), 2017, 47(4):710-716.
    [16]
    张永祥,刘心,褚志刚,等.基于随机子空间法的模态参数自动提取[J].机械工程学报, 2018, 54(9):187-194.
    [17]
    尹红燕,刘东霞,唐莉.基于K-means聚类算法的桥梁结构真实模态筛选研究[J].公路交通科技, 2020, 37(5):73-82.
    [18]
    梁鹏,贺敏,张阳,等.实时在线桥梁模态参数自动识别[J].振动,测试与诊断, 2021, 41(1):76-84

    , 201.
    [19]
    LU Y, WAN Y. PHA:a fast potential-based hierarchical agglomerative clustering method[J]. Pattern Recognition, 2013, 46(5):1227-1239.
    [20]
    PARZEN E. On estimation of probability density function and mode[J]. The Annals of Mathematical Statistics, 1962, 33(3):1065-1076.
    [21]
    AUWERAER H V D, PEETERS B. Discriminating physical poles from mathematical poles in high order systems:use and automation of the stabilization diagram[C]//Proceedings of the 21st IEEE Instrumentation and Measurement Technology Conference. Como, Italy:2004.
    [22]
    徐健,周志祥,唐亮,等.基于谱系聚类分析的桥梁结构模态参数自动化识别方法研究[J].振动与冲击, 2017, 36(11):206-214.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (31) PDF downloads(0) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return