Source Journal of Chinese Scientific and Technical Papers
Included as T2 Level in the High-Quality Science and Technology Journals in the Field of Architectural Science
Core Journal of RCCSE
Included in the CAS Content Collection
Included in the JST China
Indexed in World Journal Clout Index (WJCI) Report
ZHANG Xiaojie, WU Jiayu, CHEN Jian-Fei. Bearing Capacity of CFRP-Lined PCCP Under Internal Pressure[J]. INDUSTRIAL CONSTRUCTION, 2024, 54(6): 61-71. doi: 10.3724/j.gyjzG23071211
Citation: ZHANG Xiaojie, WU Jiayu, CHEN Jian-Fei. Bearing Capacity of CFRP-Lined PCCP Under Internal Pressure[J]. INDUSTRIAL CONSTRUCTION, 2024, 54(6): 61-71. doi: 10.3724/j.gyjzG23071211

Bearing Capacity of CFRP-Lined PCCP Under Internal Pressure

doi: 10.3724/j.gyjzG23071211
  • Received Date: 2023-07-12
    Available Online: 2024-06-24
  • The prestressed concrete cylinder pipe (PCCP) may fail at each structural layer under internal pressure. Carbon fiber reinforced polymer (CFRP) lining is one of the most commonly used methods for repairing PCCPs. However, the failure mechanism of CFRP-lined PCCP under internal pressure remains to be fully understood. The paper presents a multilayer ring model of CFRP-lined PCCP under internal pressure. Analytical expressions for the radial displacement, stress and strain of CFRP-lined PCCP were obtained. The analytical results were in good agreement with existing experimental results, which verified the accuracy of the model. The parametric study results showed that the bearing capacity of PCCP under internal pressure increased with the increase of steel cylinder thickness and concrete core thickness. In addition, increasing the prestressing level could improve the cracking resistance capacity. The bearing capacity of CFRP-lined PCCP under internal pressure increased with the increase of CFRP thickness.
  • [1]
    American Water Works Association. Design of prestressed concrete cylinder pipe[S]. USA: AWWA, 2014: 144.
    [2]
    ZHANG X, WU J, HOU C, et al. An analytical solution for stress transfer between a broken prestressing wire and mortar coating in PCCP[J]. Materials, 2022, 15(16), 5779.
    [3]
    Washington Suburban Sanitary Commission. WSSC pipeline design manual amendment proposed 80-foot setback[R]. Laurel, Maryland: WSSC, 2012.
    [4]
    BALL R T, MOORE W G, SMITH D L, et al. Prestressed concrete cylinder pipe rehabilitation repair and replacement: large diameter success stories[J]. Florida Water Resources Journal, 2012,6(9): 4-10.
    [5]
    WALSH T L, HODGE D S. Overcoming the challenges of replacing 20 km of defective 1 524 mm diameter PCCP[C]//Proceedings of the Pipelines in the Constructed Environment. San Diego, California: 1998.
    [6]
    ZHAO L, DOU T, CHENG B, et al. Experimental study on the reinforcement of prestressed concrete cylinder pipes with external prestressed steel strands[J]. Applied Sciences, 2019, 9(1): 149-167.
    [7]
    ZHAO L, DOU T, CHENG B, et al. Theoretical study and application of the reinforcement of prestressed concrete cylinder pipes with external prestressed steel strands[J]. Applied Sciences, 2019, 9(24): 248-247.
    [8]
    ELNAKHAT H, RAYMOND R. Repair of PCCP by post tensioning[C]//Proceedings of the Pipelines 2006. Chicago, IL, United States: 2006.
    [9]
    ZHAI K, FANG H, FU B, et al. Mechanical response of externally bonded CFRP on repair of PCCPs with broken wires under internal water pressure[J]. Construction and Building Materials, 2020, 239: 1-10.
    [10]
    ZHAI K, FANG H, GUO C, et al. Strengthening of PCCP with broken wires using prestressed CFRP[J]. Construction and Building Materials, 2021, 267: 1-11.
    [11]
    STINE G P, STIFT M T. Rehabilitation of 183-cm PCCP with Steel Plate Liners[C]//Proceedings of the Pipelines in the Constructed Environment. San Diego, California: 1998.
    [12]
    RAHMAN S, SMITH G, MIELKE R, et al. Rehabilitation of large diameter PCCP: relining and sliplining with steel pipe[M]//Pipelines 2012: Innovations in Design, Construction, Operations, and Maintenance, Doing More with Less. Reston: American Society of Civil Engineers,2012: 494-504.
    [13]
    PRIDMORE A B, OJDROVIC R P. Trenchless Repair of Concrete Pipelines Using Fiber-Reinforced Polymer Composites[M]//Karbhari V M. Rehabilitation of Pipelines Using Fiber-reinforced Polymer (FRP) Composites. Woodhead Publishing, 2015: 17-38.
    [14]
    ZARGHAMEE M S, ENGINDENIZ M. CFRP renewal of PCCP-an overview[C]//Proceedings of the Pipelines 2014. Portland, OR, United States: 2014.
    [15]
    HENRY G, LARSEN M, OLINGER G. Trenchless repair of coastal water authority’s 60-Inch PCCP pipeline along independence parkway[C]//Proceedings of the Pipelines 2019. Nashville, TN, United States: 2019.
    [16]
    GIPSOV M P, ENGINDENIZ M, OJDROVIC R O. Performance of CFRP-Lined PCCP with continuing wire breakage[C]//Proceedings of the Pipelines 2019. Nashville, TN, United States: 2019.
    [17]
    ENGINDENIZ M, ZARGHAMEE M S. Experimental basis of CFRP renewal of PCCP[C]//Proceedings of the Pipelines 2014. Portland, OR, United States: 2014.
    [18]
    ZARGHAMEE M S. Hydrostatic pressure testing of prestressed concrete cylinder pipe with broken wires[Z]. International Conference on Pipeline Engineering and Construction. Baltimore, MD, United states: American Society of Civil Engineers, 2003: 294-303.
    [19]
    窦铁生, 程冰清, 胡赫, 等. 预应力钢筒混凝土管结构变形规律的原型试验研究Ⅰ:内压[J]. 水利学报, 2017, 48: 1438-1446.
    [20]
    窦铁生, 程冰清, 胡赫, 等. CFRP修复PCCP的内水压试验 [J]. 混凝土与水泥制品, 2017(12): 35-40.
    [21]
    HU B, FANG H, WANG F, et al. Full-scale test and numerical simulation study on load-carrying capacity of prestressed concrete cylinder pipe (PCCP) with broken wires under internal water pressure[J]. Engineering Failure Analysis, 2019, 104: 513-530.
    [22]
    HU H, DOU T, NIU F, et al. Experimental and numerical study on CFRP-lined prestressed concrete cylinder pipe under internal pressure[J]. Engineering Structures, 2019, 190: 480-492.
    [23]
    赵丽君, 窦铁生, 程冰清, 等. 预应力钢筒混凝土管体外预应力加固试验研究[J]. 水利学报, 2019, 50(7): 844-853.
    [24]
    窦铁生, 程冰清, 胡赫, 等. CFRP修复PCCP断丝管的试验研究[J]. 中国水利水电科学研究院学报, 2019, 17(1): 68-74.
    [25]
    窦铁生, 董晓农, 章煊, 等. PCCP断丝破坏规律Ⅰ:原型试验研究[J]. 水利学报, 2023, 54(12): 1430-1439.
    [26]
    CHENG B, DOU T, XIA S, et al. Mechanical properties and loading response of prestressed concrete cylinder pipes under internal water pressure[J]. Engineering Structures, 2020, 216, 110674.
    [27]
    翟科杰, 方宏远, 付兵, 等. 断丝PCCP管道外贴CFRP修复足尺模型试验研究[J]. 岩土工程学报, 2019, 41(1): 157-160.
    [28]
    熊欢. 南水北调超大口径PCCP预应力分析模型与试验研究[D]. 北京:清华大学, 2010.
    [29]
    胡赫. CFRP修复预应力钢筒混凝土管(PCCP)内压试验与数值分析[D]. 北京:中国水利水电科学研究院, 2017.
    [30]
    HU H, NIU F, DOU T, et al. Rehabilitation effect evaluation of CFRP-lined prestressed concrete cylinder pipe under combined loads using numerical simulation[J]. Mathematical Problems in Engineering, 2018, 2018: 1-18.
    [31]
    窦铁生, 程冰清, 夏世法, 等. CFRP内衬法加固预应力钢筒混凝土管的内水压力试验研究 [J]. 混凝土与水泥制品, 2021(11): 44-48.
    [32]
    ZARGHAMEE M S, EGGERS D W, OJDROVIC R P. Finite-element modeling of failure of PCCP with broken wires subjected to combined loads[C]//Proceedings of the Pipelines 2002. Cleveland, OH, United States: 2002.
    [33]
    窦铁生, 胡赫, 杨进新, 等. PCCP断丝数量对内压承载力的影响[J]. 混凝土与水泥制品, 2015(7): 35-37.
    [34]
    钟胜, 冯新, 赵琳, 等. 大型PCCP断丝效应的数值模型对比研究 [J]. 市政技术, 2017, 35(3): 109-114.
    [35]
    LEE Y, LEE E T. Analysis of prestressed concrete cylinder pipes with fiber reinforced polymer[J]. KSCE Journal of Civil Engineering, 2015, 19(3): 682-688.
    [36]
    LEE Y. Analysis of Prestressed Concrete Cylinder Pipes for Rehabilitation[D]. USA: University of California, 2011.
    [37]
    SUN Y Y, HU S W, HUANG Y Q, et al. Analytical stress model for embedded bar-wrapped cylinder concrete pressure pipe under internal load[J]. Thin-Walled Structures, 2020, 149, 106540.
    [38]
    胡少伟, 刘晓鑫. PCCP管道结构承受内水压的全过程分析 [J]. 水利水电科技进展, 2011, 31(2): 71-73.
    [39]
    董晓农, 李萌, 孙志恒, 等. 预应力钢筒混凝土管内壁复式碳纤维加固试验与计算分析[J]. 水利学报, 2019, 50(6): 780-786.
    [40]
    董晓农. 预应力钢筒混凝土管(PCCP)内壁复式碳纤维加固技术的研究[D]. 北京:中国水利水电科学研究院, 2019.
    [41]
    孙志恒, 董晓农, 郝巨涛, 等. PCCP内壁复式碳纤维加固技术及应力计算分析 [J]. 水利水电技术, 2018, 49(7): 88-93.
    [42]
    TIMOSHENKO S P, GOODIER J N. Theory of elasticity[M]. New York: McGraw-Hill, 1970.
  • Relative Articles

    [1]DENG Jun, LI Junhui, GUO Dong. A Review of Durability Research of Notched Steel Beams Reinfoned with Prestressed CFRP[J]. INDUSTRIAL CONSTRUCTION, 2024, 54(6): 81-90. doi: 10.3724/j.gyjzG24042801
    [2]LIU Bin, YANG Jiaqi, LIU Tianqiao, HU Lili, FENG Peng. Finite Element Analysis of Reinforced Concrete Beams Strengthened with Prestressed CFRP Plates with High Ductility[J]. INDUSTRIAL CONSTRUCTION, 2024, 54(6): 72-80. doi: 10.3724/j.gyjzG23111328
    [3]YUE Xianghua, LONG Yueling, JIANG Yujie, LI Wentao, CAI Jian. Axial Compressive Performance and Constitutive Model of CFST Columns with an Inner FRP Tube[J]. INDUSTRIAL CONSTRUCTION, 2024, 54(6): 177-189. doi: 10.3724/j.gyjzG24041713
    [4]YAN Shuyun, SHAO Yongjian, HONG Yu. Seismic Performance Analysis of Concrete Composite Torsional Columns Strengthened with CFRP Based on Cohesion Model[J]. INDUSTRIAL CONSTRUCTION, 2024, 54(6): 108-117. doi: 10.3724/j.gyjzG23022014
    [5]JIA Ruixin, LIU Yue. Research on Shear and Bending Performance of Novel LCP-Fiber-Braided Reinforced CFRP Tendons[J]. INDUSTRIAL CONSTRUCTION, 2024, 54(12): 238-245. doi: 10.3724/j.gyjzG24091101
    [6]LIU Lan, WANG Lijing, GUO Hong, CHENG Zhi. ANALYSIS ON BLAST-RESISTANT PERFORMANCES OF CONCRETE-FILLED STEEL TUBE COLUMNS CONFINED WITH FRP UNDER AXIAL COMPRESSION[J]. INDUSTRIAL CONSTRUCTION, 2021, 51(1): 179-186,193. doi: 10.13204/j.gyjzG20022803
    [7]YANG Xinguang, LI Jiwa, XU Haixiang, LIU Kai, SONG Zhengfeng. ULTIMATE BEARING CAPABILITY ANALYSIS OF CONTAINMENT STRUCTURES SUBJECTED TO INTERNAL PRESSURE[J]. INDUSTRIAL CONSTRUCTION, 2021, 51(12): 74-78. doi: 10.13204/j.gyjzG21102021
    [8]LIU Shengwei, ZHAO Jianchang, ZHANG Jiawei. EXPERIMENTAL RESEARCH ON TENSILE PROPERTIES OF CFRP SHEETS IN SULFATE ENVIRONMENT[J]. INDUSTRIAL CONSTRUCTION, 2020, 50(8): 172-176. doi: 10.13204/j.gyjzG201908060007
    [9]WEN Xuezhang, DAI Jinfeng, SHU Xingping, CAI Jun. EXPERIMENTAL STUDY AND THEORETICAL ANALYSIS OF DEFLECTION OF SIMPLY SUPPORTED UNIDIRECTIONAL PLATES ON FOUR SIDES OF THE STRUCTURE OF STAINLESS STEEL SANDWICH PANEL[J]. INDUSTRIAL CONSTRUCTION, 2020, 50(2): 24-33,58. doi: 10.13204/j.gyjz202002004
    [12]Wang Xinling, Liu Yanbing, Li Zhaofeng, Su Huixiao. EXPERIMENTAL ANALYSIS OF DEBONDING FAILURE OF STRENGTHENING PRESTRESSED RC BEAM WITH CFRP SHEETS[J]. INDUSTRIAL CONSTRUCTION, 2014, 44(10): 6-9. doi: 10.13204/j.gyjz201410002
    [13]Zhang Xingqiang, Yao Jian. RESEARCH PROGRESS IN STRENGTHENING THEORY OF BENDING STEEL MEMBERS STRENGTHENED WITH CFRP[J]. INDUSTRIAL CONSTRUCTION, 2014, 44(10): 121-127. doi: 10.13204/j.gyjz201410025
    [14]Guo Yongchang, Zhong Jian, Xie Jianhe, Cen Yuqiao, Du Zhengpeng. EXPERIMENTAL STUDY OF AXIAL COMPRESSIVE BEHAVIOR OF CFRP-CONFINED HIGH-STRENGTH CONCRETE DAMAGED BY HIGH TEMPERATURE[J]. INDUSTRIAL CONSTRUCTION, 2014, 44(10): 1-5. doi: 10.13204/j.gyjz201410001
    [15]Xu Ming, Pang Fangteng, Chen Zhongfan. FLEXURAL BEHAVIOR OF REINFORCED CONCRETE BEAMS STRENGTHENED WITH CFRP SHEETS BONDED WITH INORGANIC MATRIX[J]. INDUSTRIAL CONSTRUCTION, 2013, 43(4): 156-159. doi: 10.13204/j.gyjz201304032
    [16]Wang Juan, Zhao Junhai, Zhu Qian, Zhang Zhichao, Liu Qi. AXIAL BEARING CAPACITY OF FRP-CONCRETE-STEEL DOUBLE-SKIN TUBULAR SHORT COLUMNS[J]. INDUSTRIAL CONSTRUCTION, 2011, 41(11): 130-133. doi: 10.13204/j.gyjz201111028
    [17]Wang Chenxia, Ming Wenhui. SEISMIC BEHAVIOR OF REINFORCED CONCRETE CRACK-SHORT COLUMNS STRENGTHENED WITH CFRP[J]. INDUSTRIAL CONSTRUCTION, 2011, 41(10): 15-19. doi: 10.13204/j.gyjz201110004
    [18]Zhang Liangquan, Li Hui. EXPERIMENTAL STUDY ON MECHANICAL PROPERTIES OF FILAMENT-WOUND CFRP TUBES[J]. INDUSTRIAL CONSTRUCTION, 2009, 39(8): 76-79. doi: 10.13204/j.gyjz200908020
    [19]Li Susu, Chen Fengshan, Liu Yi. EXPERIMENT AND ANALYSIS OF LONG-TIME MECHANICAL PROPERTIES OF CARBON FIBER REINFORCED POLYMER[J]. INDUSTRIAL CONSTRUCTION, 2007, 37(5): 69-72. doi: 10.13204/j.gyjz200705018
    [20]Xu Guigen, Nie Jianguo, . EXPERIMENTAL STUDY AND THEORETICAL ANALYSIS ON THE STEEL MEMBERS JOINTED BY CEMENTATION[J]. INDUSTRIAL CONSTRUCTION, 2005, 35(9): 86-89. doi: 10.13204/j.gyjz200509024
  • Cited by

    Periodical cited type(3)

    1. 马彬,祝周杰,詹懿德,王海军. 海上风电高桩承台基础关键部位受力特性研究. 海洋技术学报. 2024(01): 63-73 .
    2. 祝周杰,詹懿德,马彬,王海军,张晓雪,李秉轩. 海上风电高桩承台基础结构的受力特性. 深圳大学学报(理工版). 2024(04): 509-516 .
    3. 罗崯滔,王文玲,刘帅栋,王宇航,陈成,梁佳俊,高光一. 海上风电机组高桩承台基础结构参数对结构动力响应规律的影响. 特种结构. 2024(04): 57-63 .

    Other cited types(0)

  • Created with Highcharts 5.0.7Amount of accessChart context menuAbstract Views, HTML Views, PDF Downloads StatisticsAbstract ViewsHTML ViewsPDF Downloads2024-052024-062024-072024-082024-092024-102024-112024-122025-012025-022025-032025-04051015202530
    Created with Highcharts 5.0.7Chart context menuAccess Class DistributionFULLTEXT: 12.4 %FULLTEXT: 12.4 %META: 84.3 %META: 84.3 %PDF: 3.3 %PDF: 3.3 %FULLTEXTMETAPDF
    Created with Highcharts 5.0.7Chart context menuAccess Area Distribution其他: 23.5 %其他: 23.5 %China: 0.7 %China: 0.7 %上海: 1.3 %上海: 1.3 %伊利诺伊州: 0.7 %伊利诺伊州: 0.7 %保定: 3.9 %保定: 3.9 %包头: 0.7 %包头: 0.7 %北京: 16.3 %北京: 16.3 %南京: 2.0 %南京: 2.0 %南通: 0.7 %南通: 0.7 %天津: 0.7 %天津: 0.7 %宣城: 0.7 %宣城: 0.7 %廊坊: 0.7 %廊坊: 0.7 %张家口: 3.3 %张家口: 3.3 %成都: 1.3 %成都: 1.3 %扬州: 0.7 %扬州: 0.7 %杭州: 0.7 %杭州: 0.7 %武汉: 0.7 %武汉: 0.7 %深圳: 4.6 %深圳: 4.6 %温州: 0.7 %温州: 0.7 %漯河: 0.7 %漯河: 0.7 %烟台: 1.3 %烟台: 1.3 %石家庄: 1.3 %石家庄: 1.3 %福州: 1.3 %福州: 1.3 %纽约: 0.7 %纽约: 0.7 %芒廷维尤: 19.0 %芒廷维尤: 19.0 %芝加哥: 3.3 %芝加哥: 3.3 %西宁: 0.7 %西宁: 0.7 %西安: 2.6 %西安: 2.6 %运城: 3.3 %运城: 3.3 %遵义: 0.7 %遵义: 0.7 %长沙: 2.0 %长沙: 2.0 %其他China上海伊利诺伊州保定包头北京南京南通天津宣城廊坊张家口成都扬州杭州武汉深圳温州漯河烟台石家庄福州纽约芒廷维尤芝加哥西宁西安运城遵义长沙

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (129) PDF downloads(5) Cited by(3)
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return