Source Journal of Chinese Scientific and Technical Papers
Included as T2 Level in the High-Quality Science and Technology Journals in the Field of Architectural Science
Core Journal of RCCSE
Included in the CAS Content Collection
Included in the JST China
Indexed in World Journal Clout Index (WJCI) Report
XIAO Congzhen, LI Jianhui, MA Tianyi, WEI Yue, WU Zhenhong, QIAO Baojuan. Current Situation and Development of Retrofitting and Performance Improvement for Existing Building Structures[J]. INDUSTRIAL CONSTRUCTION, 2024, 54(1): 20-30. doi: 10.3724/j.gyjzG23120812
Citation: WANG Qinghe, XU Suning, WANG Yucheng, WANG Dong, WANG Meng, SONG Xiaoguang. Mechanical Properties and Meso-Structure of Polypropylene Fiber Reinforced Barite Concrete[J]. INDUSTRIAL CONSTRUCTION, 2024, 54(7): 210-216. doi: 10.3724/j.gyjzG23070508

Mechanical Properties and Meso-Structure of Polypropylene Fiber Reinforced Barite Concrete

doi: 10.3724/j.gyjzG23070508
  • Received Date: 2023-07-05
    Available Online: 2024-08-16
  • The highly crystalline structure of barite aggregate makes it fragile, resulting in poor mechanical properties of barite radiation-proof concrete, which limits its application in buildings with severe radiation such as high-pressure and high-thermonuclear projects. To study the effect of polypropylene fiber incorporation on the mechanical properties of barite concrete, the effects of polypropylene fiber content (0, 3, 6, 9 kg/m3) on the mechanical properties of barite concrete with different strength grades were analyzed, and the size effect of barite concrete cube compressive strength was quantified. The meso-structure of polypropylene fiber barite concrete was studied via SEM test. The results showed that the surface of PR40 fiber was wrapped by a dense hardened cement matrix, which improved the structural strength of the polypropylene fiber-cement matrix, thus improving the splitting tensile strength and flexural strength of barite concrete. With the increase in fiber content, the 28 d compressive strength of the specimens increased by 4.3%-19.6%, and the 28 d flexural and splitting tensile strength increased by 1.8%-25.0% and 4.9%-27.7%, respectively. When the fiber content increased, the cement content could not meet the fiber wrapping, so the compressive strength of barite concrete increased first and then decreased with the increase of fiber contents. The size effect of the compressive strength of barite concrete cubes was gradually significant with the increase of fiber content. Compared with the specimens without fiber, the size effect coefficient η100 increased by 0.2%-5.9%, and the size effect coefficient η200 increased by 1.8%-5.9%.
  • [1]
    余胜海. 能源战争[M]. 北京:北京大学出版社, 2012.
    [2]
    陈清己. 重晶石防辐射混凝土配合比设计及其性能研究[D]. 长沙:中南大学, 2010.
    [3]
    MASLEHUDDIN M, NAQVI A A, IBRAHIM M, et al. Radiation shielding properties of concrete with electric arc furnace slag aggregates and steel shots[J]. Annals of Nuclear Energy, 2013, 53(11): 192-196.
    [4]
    Y1LMAZ E, BALTAS H, K1R1S E, et al. Gamma-ray and neutron shielding properties of some concrete materials[J]. Annals of Nuclear Energy, 2011, 38(10): 2204-2212.
    [5]
    ATTACHAIYAWUTH A, RATH S, TANAKA K, et al. Improvement of self-compactibility of air-enhanced self-compacting concrete with fine entrained air[J]. Journal of Advanced Concrete Technology, 2016, 14(3): 55-69.
    [6]
    ENSOY A, GÖKÇE H. Simulation and optimization of gamma-ray linear attenuation coefficients of barite concrete shields[J]. Construction and Building Materials, 2020, 253(8): 1-8.
    [7]
    ELHAM M, JALIL M, MOHAMMAD R R D. Elaboration of X-ray shielding of highly barite-loaded polyester concrete: structure, mechanical properties, and MCNP simulation[J]. Construction and Building Materials, 2023, 370(2): 1-10.
    [8]
    GONZÁLEZ-ORTEGA M, CAVALARO S, AGUADO A. Influence of barite aggregate friability on mixing process and mechanical properties of concrete[J]. Construction and Building Materials, 2015, 74(1): 169-175.
    [9]
    梁宁慧, 钟杨, 刘新荣. 多尺寸聚丙烯纤维混凝土抗弯韧性试验研究[J]. 中南大学学报(自然科学版), 2017, 48(10): 2783-2789.
    [10]
    WANG D H, JU Y Z, SHEN H, et al. Mechanical properties of high-performance concrete reinforced with basalt fiber and polypropylene fiber[J]. Construction and Building Materials, 2019, 197(2): 464-473.
    [11]
    YUAN Z, JIA Y M. Mechanical properties and microstructure of glass fiber and polypropylene fiber reinforced concrete: An experimental study[J]. Construction and Building Materials, 2021, 266(1): 1-13.
    [12]
    ASTM International. Standard specification for aggregates for radiation-shielding concrete:ASTM C637[S]. West Conshohocken:2014.
    [13]
    中华人民共和国住房和城乡建设部. 普通混凝土拌合物性能试验方法标准: GB/T 50080—2016[S]. 北京:中国建筑工业出版社, 2016.
    [14]
    中华人民共和国住房和城乡建设部. 混凝土物理力学性能试验方法标准: GB/T 50081—2019[S]. 北京:中国建筑工业出版社, 2019.
    [15]
    ASTM International. Standard guide for examination of hardened concrete using scanning electron microscopy:ASTM C1723—2010[S]. West Conshohocken:2010.
    [16]
    CHEN M, CHEN W, ZHONG H, et al. Experimental study on dynamic compressive behaviour of recycled tyre polymer fibre reinforced concrete[J]. Cement and Concrete Composites, 2019, 98(4): 95-112.
    [17]
    AFROUGHSABET V, OZBAKKALOGLU T. Mechanical and durability properties of high-strength concrete containing steel and polypropylene fibers[J]. Construction and Building Materials, 2015, 94(6): 73-82.
    [18]
    FALLAH S, NEMATZADEH M. Mechanical properties and durability of high-strength concrete containing macro-polymeric and polypropylene fibers with nano-silica and silica fume[J]. Construction and Building Materials, 2017, 132(6): 170-187.
    [19]
    LI J J, NIU J G, WAN C J, et al. Investigation on mechanical properties and microstructure of high performance polypropylene fiber reinforced lightweight aggregate concrete[J]. Construction and Building Materials, 2016, 118(6): 27-35.
    [20]
    YEW M K, MAHMUD H B, ANG B C, et al. Influence of different types of polypropylene fibre on the mechanical properties of high-strength oil palm shell lightweight concrete[J]. Construction and Building Materials, 2015, 90(6): 36-43.
  • Relative Articles

    [1]GUO Wei, ZHANG Yipeng, WAN Yufeng, CHEN An, SUN Jing. A State-of-the-Art Review of Research and Application of FRP Composites in Railway Infrastructure[J]. INDUSTRIAL CONSTRUCTION, 2024, 54(6): 190-196. doi: 10.3724/j.gyjzG24040601
    [2]WU Ying, LI Aiqun. Application and Circled Layer Scene Construction of Digital Twin Technology from Coupling Perspective of "City-Building-People"[J]. INDUSTRIAL CONSTRUCTION, 2023, 53(4): 180-189. doi: 10.13204/j.gyjzG23012403
    [3]Qi Yicong. REGENERATIVE DESIGN METHOD AND ANALYSIS OF INDUSTRIAL HERITAGE[J]. INDUSTRIAL CONSTRUCTION, 2014, 44(04): 40-44.
    [4]Shu Biqing, Zheng Juan. DETECTION APPRAISAL AND STRENGTHENING OF A BENT FRAME STRUCTURE PLANT[J]. INDUSTRIAL CONSTRUCTION, 2014, 44(06): 139-142. doi: 10.13204/j.gyjz201406030
    [5]Sun Changling, Wang Zhiyuan. THE EXAMPLE ABOUT THE ADAPTIVE REUSEOF OF AN INDUSTRIAL PLANT[J]. INDUSTRIAL CONSTRUCTION, 2013, 43(2): 168-171. doi: 10.13204/j.gyjz201302034
    [6]Xue Suduo, Zhang Yigang, Cao Zi, Li Xiongyan. PROSPECT AND FURTHER DEVELOPMENT OF SEISMIC RESEARCH ON SPATIAL STRUCTURES OVER LAST THIRTY YEARS IN CHINA[J]. INDUSTRIAL CONSTRUCTION, 2013, 43(6): 105-116. doi: 10.13204/j.gyjz201306022
    [7]Zhao Jida, Lan Tian. THIRTY YEARS PROGRESS AND FUTURE PROSPECT OF SPATIAL STRUCTURES IN CHINA[J]. INDUSTRIAL CONSTRUCTION, 2013, 43(4): 131-138,164. doi: 10.13204/j.gyjz201304028
    [8]Cao Xia, Xie Dan, Jin Lingzhi. REINFORCEMENT AND RENOVATION OF THE OFFICE BUILDING OF A POLICE STATION IN GUILIN[J]. INDUSTRIAL CONSTRUCTION, 2012, 42(4): 143-146,64. doi: 10.13204/j.gyjz201204029
    [9]Tang Hongyuan, Wang Zeyun, Jia Yigang. ASSESSMENT AND STRENGTHEN FOR A CHEMICAL FIBRE FACTORY BUILDING SUBJECTED TO FIRE DISASTER[J]. INDUSTRIAL CONSTRUCTION, 2012, 42(7): 152-155,170. doi: 10.13204/j.gyjz201207026
    [10]Zhou Hongbing. APPRAISAL OF THE IMPACT OF FOUNDATION CONSTRUCTION OF A HIGH-RISE BUILDING ON STRUCTURAL SAFETY OF THE ADJACENT BUILDING[J]. INDUSTRIAL CONSTRUCTION, 2010, 40(2): 116-119. doi: 10.13204/j.gyjz201002027
    [11]Yuan Chengfang, Niu Ditao, Wang Qinglin, Yuan Bo. SAFETY EVALUATION AND STRUCTURE STRENGTHENING OF A CHEMICAL PLANT SUBJECTED TO FIRE DISASTER[J]. INDUSTRIAL CONSTRUCTION, 2010, 40(6): 113-117. doi: 10.13204/j.gyjz201006026
    [12]Jiang Lixue, Zheng Qiaowen. SEISMIC ANALYSIS METHOD FOR RC FRAMES CONSIDERING INTERACTION BETWEEN PRIMARY AND SECONDARY STRUCTURES AND ITS APPLICATION[J]. INDUSTRIAL CONSTRUCTION, 2009, 39(5): 6-10. doi: 10.13204/j.gyjz200905002
    [13]Wang Junqiang. DAMAGES TO MULTISTORY BRICK-CONCRETE BUILDINGS AFTER WENCHUAN EARTHQUAKE AND THEIR APPRAISAL[J]. INDUSTRIAL CONSTRUCTION, 2009, 39(1): 47-49,59. doi: 10.13204/j.gyjz200901009
    [14]Zhang Kaichen, Wang Feng, Si Bo, Li Ming. DESIGN AND CONSTRUCTION OF THE CORBEL BETWEEN THE OLD COLUMN AND THE NEW BEAM FOR A REFORM PROJECT[J]. INDUSTRIAL CONSTRUCTION, 2009, 39(11): 126-128. doi: 10.13204/j.gyjz200911029
    [15]Zheng Qizhen, Bao Yongliang, Wei Lin. THE DETECTION & IDENTIFICATION ON THE MAJOR STRUCTURE OF PROTECTED HISTORICAL SIGNIFICANT BUILDING[J]. INDUSTRIAL CONSTRUCTION, 2009, 39(8): 1-3,7. doi: 10.13204/j.gyjz200908001
    [16]Shu Hongbo, Zheng Jianjun, Zhang Shaohua. QUALIFICATION AND REINFORCEMENT OF CONCRETE STRUCTURES AFTER FIRE[J]. INDUSTRIAL CONSTRUCTION, 2009, 39(8): 25-27. doi: 10.13204/j.gyjz200908007
    [17]Dong Hairong, Qi Shaoming, Sun Xiaolu, Wu Xin. STUDY ON TECHNOLOGY OF ENERGY-SAVING RECONSTRUCTION ON EXISTING RESIDENTIAL BUILDINGS IN THE COLD DISTRICT[J]. INDUSTRIAL CONSTRUCTION, 2009, 39(7): 4-6. doi: 10.13204/j.gyjz200907002
    [18]Tan Jun, Wang Ying, Zheng Wenzhong. DESIGN OF TWO TYPICAL POST-BUILT SUSPENDED STAIRCASES[J]. INDUSTRIAL CONSTRUCTION, 2008, 38(4): 119-123,86. doi: 10.13204/j.gyjz200804030
    [19]Zhong Wenle, Chen Pei, Jiang Fengchang, Yang Genhong, Lu Jianwang. STRENGTHENING AND RECONSTRUCTION A CHEMICAL WORKSHOP INTO 2-HLS90 CONCRETE-MIXING BUILDING[J]. INDUSTRIAL CONSTRUCTION, 2007, 37(2): 107-109. doi: 10.13204/j.gyjz200702027
    [20]Chun Qing, Qiu Hongxing, Huang Zhicheng, Pan Jianwu, Fang Zhibao. EXPERIMENTAL STUDY ON ANCHORAGE PERFORMANCE OF DOUBLE ADHESIVE ANCHORS FOR RC STRUCTURES[J]. INDUSTRIAL CONSTRUCTION, 2006, 36(2): 98-100. doi: 10.13204/j.gyjz200602029
  • Cited by

    Periodical cited type(12)

    1. 李凯,刘博,陈必光,杨卓,翟博渊. 重复压浆钢管桩在既有建筑基础加固中的应用. 广州建筑. 2025(01): 14-18 .
    2. 蔡旭东. 建筑结构加固改造技术与方法浅析. 广州建筑. 2025(01): 45-49 .
    3. 翟长海,丁俊男,史铁花,王代玉,黄颖. 既有建筑抗震韧性提升方法研究. 地震工程与工程振动. 2025(01): 18-27 .
    4. 黄晓旭,胡彪,李中流. 基于PDCA闭环模式的案例教学法在工程结构鉴定与加固课程中的应用. 科教导刊. 2025(01): 38-41 .
    5. 张吾健. 可持续发展理念下既有建筑改造设计策略分析. 住宅与房地产. 2024(06): 128-130 .
    6. 顾辉军. 既有建筑加固技术探析与应用——以某多层厂房加固为例. 建筑施工. 2024(05): 676-683 .
    7. 文应,蔡俊辉,孙健,郑代炳,江康. 城市更新改造中既有建筑的结构加固要点与实践. 新型城镇化. 2024(06): 57-60 .
    8. 苗元耀. 既有建筑结构加固改造原则及技术分析. 工程技术研究. 2024(12): 34-36 .
    9. 张荻,李涛杨,李伟. 城市更新为城市核心区注入新活力——既有建筑隔震托换加固改造项目的更新实践. 中国勘察设计. 2024(09): 67-69 .
    10. 梁春敏. 医院既有建筑局部结构加固实施难点及解决策略探究. 中国建筑金属结构. 2024(11): 87-89 .
    11. 陈光华,谢洪涛,孙柏锋. 基于价值工程的既有建筑加固改造项目经济性及模式创新研究. 工程管理学报. 2024(06): 117-122 .
    12. 吴梓楠,韩小雷,李建乐,黄世怡,董优. 建筑结构BIM正向设计的发展困境、关键技术与应用实践. 建筑结构. 2024(24): 136-144+135 .

    Other cited types(5)

  • Created with Highcharts 5.0.7Amount of accessChart context menuAbstract Views, HTML Views, PDF Downloads StatisticsAbstract ViewsHTML ViewsPDF Downloads2024-042024-052024-062024-072024-082024-092024-102024-112024-122025-012025-022025-030255075100125
    Created with Highcharts 5.0.7Chart context menuAccess Class DistributionFULLTEXT: 9.4 %FULLTEXT: 9.4 %META: 83.5 %META: 83.5 %PDF: 7.1 %PDF: 7.1 %FULLTEXTMETAPDF
    Created with Highcharts 5.0.7Chart context menuAccess Area Distribution其他: 9.4 %其他: 9.4 %其他: 0.9 %其他: 0.9 %Baden: 0.4 %Baden: 0.4 %Central District: 0.6 %Central District: 0.6 %China: 0.3 %China: 0.3 %Kennedy Town: 0.3 %Kennedy Town: 0.3 %三明: 0.1 %三明: 0.1 %上海: 6.4 %上海: 6.4 %东莞: 4.5 %东莞: 4.5 %乌鲁木齐: 0.1 %乌鲁木齐: 0.1 %保定: 0.3 %保定: 0.3 %信阳: 0.1 %信阳: 0.1 %六安: 0.1 %六安: 0.1 %兰州: 0.4 %兰州: 0.4 %北京: 12.0 %北京: 12.0 %南京: 3.3 %南京: 3.3 %南宁: 0.1 %南宁: 0.1 %南昌: 0.3 %南昌: 0.3 %厦门: 0.1 %厦门: 0.1 %台北: 0.1 %台北: 0.1 %台州: 0.7 %台州: 0.7 %合肥: 0.7 %合肥: 0.7 %吉隆坡: 0.3 %吉隆坡: 0.3 %周口: 0.4 %周口: 0.4 %呼和浩特: 0.3 %呼和浩特: 0.3 %咸宁: 0.1 %咸宁: 0.1 %哈尔滨: 0.4 %哈尔滨: 0.4 %唐山: 0.1 %唐山: 0.1 %商丘: 0.1 %商丘: 0.1 %喀什: 0.3 %喀什: 0.3 %天津: 0.7 %天津: 0.7 %太原: 0.1 %太原: 0.1 %威海: 0.1 %威海: 0.1 %宁波: 0.1 %宁波: 0.1 %安庆: 0.3 %安庆: 0.3 %安康: 0.4 %安康: 0.4 %安阳: 0.4 %安阳: 0.4 %宜春: 0.7 %宜春: 0.7 %宣城: 0.6 %宣城: 0.6 %常德: 0.7 %常德: 0.7 %广州: 1.6 %广州: 1.6 %廊坊: 0.3 %廊坊: 0.3 %张家口: 0.6 %张家口: 0.6 %徐州: 0.6 %徐州: 0.6 %德阳: 0.1 %德阳: 0.1 %成都: 3.0 %成都: 3.0 %扬州: 0.6 %扬州: 0.6 %无锡: 0.3 %无锡: 0.3 %昆明: 1.6 %昆明: 1.6 %昭通: 0.1 %昭通: 0.1 %曲靖: 0.9 %曲靖: 0.9 %朝阳: 0.1 %朝阳: 0.1 %杭州: 1.4 %杭州: 1.4 %松原: 0.4 %松原: 0.4 %柏林: 0.1 %柏林: 0.1 %武汉: 2.3 %武汉: 2.3 %沈阳: 0.3 %沈阳: 0.3 %河内: 0.1 %河内: 0.1 %泉州: 0.1 %泉州: 0.1 %济南: 1.6 %济南: 1.6 %济宁: 0.1 %济宁: 0.1 %海口: 0.4 %海口: 0.4 %淄博: 0.3 %淄博: 0.3 %淮安: 0.3 %淮安: 0.3 %深圳: 3.0 %深圳: 3.0 %温州: 0.6 %温州: 0.6 %湖州: 0.1 %湖州: 0.1 %漯河: 0.9 %漯河: 0.9 %漳州: 0.1 %漳州: 0.1 %濮阳: 0.9 %濮阳: 0.9 %烟台: 0.3 %烟台: 0.3 %珠海: 0.3 %珠海: 0.3 %益阳: 0.1 %益阳: 0.1 %眉山: 0.1 %眉山: 0.1 %石家庄: 0.6 %石家庄: 0.6 %福州: 1.0 %福州: 1.0 %芒廷维尤: 5.9 %芒廷维尤: 5.9 %芝加哥: 1.7 %芝加哥: 1.7 %苏州: 0.6 %苏州: 0.6 %荆门: 0.4 %荆门: 0.4 %莆田: 0.9 %莆田: 0.9 %蚌埠: 0.1 %蚌埠: 0.1 %衡阳: 0.3 %衡阳: 0.3 %衢州: 0.4 %衢州: 0.4 %西宁: 4.1 %西宁: 4.1 %西安: 1.6 %西安: 1.6 %贵阳: 0.4 %贵阳: 0.4 %赣州: 0.1 %赣州: 0.1 %运城: 0.7 %运城: 0.7 %郑州: 1.2 %郑州: 1.2 %重庆: 1.3 %重庆: 1.3 %金华: 0.1 %金华: 0.1 %金昌: 0.1 %金昌: 0.1 %银川: 0.4 %银川: 0.4 %镇江: 0.3 %镇江: 0.3 %长春: 0.4 %长春: 0.4 %长沙: 3.5 %长沙: 3.5 %阜新: 0.1 %阜新: 0.1 %阿姆斯特丹: 0.1 %阿姆斯特丹: 0.1 %青岛: 0.7 %青岛: 0.7 %马鞍山: 0.3 %马鞍山: 0.3 %鹰潭: 0.1 %鹰潭: 0.1 %齐齐哈尔: 0.1 %齐齐哈尔: 0.1 %其他其他BadenCentral DistrictChinaKennedy Town三明上海东莞乌鲁木齐保定信阳六安兰州北京南京南宁南昌厦门台北台州合肥吉隆坡周口呼和浩特咸宁哈尔滨唐山商丘喀什天津太原威海宁波安庆安康安阳宜春宣城常德广州廊坊张家口徐州德阳成都扬州无锡昆明昭通曲靖朝阳杭州松原柏林武汉沈阳河内泉州济南济宁海口淄博淮安深圳温州湖州漯河漳州濮阳烟台珠海益阳眉山石家庄福州芒廷维尤芝加哥苏州荆门莆田蚌埠衡阳衢州西宁西安贵阳赣州运城郑州重庆金华金昌银川镇江长春长沙阜新阿姆斯特丹青岛马鞍山鹰潭齐齐哈尔

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (46) PDF downloads(2) Cited by(17)
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return