Source Journal of Chinese Scientific and Technical Papers
Included as T2 Level in the High-Quality Science and Technology Journals in the Field of Architectural Science
Core Journal of RCCSE
Included in the CAS Content Collection
Included in the JST China
Indexed in World Journal Clout Index (WJCI) Report
Zhao Ruofan, Qi Xingjun, Guo Dongmei, Yang Hongchao, Qi Sheng. Research on Nondestructive Testing and Evaluation of Stiffness of Stone Arch Bridges Based on Modal Testing[J]. INDUSTRIAL CONSTRUCTION, 2024, 54(10): 223-229. doi: 10.3724/j.gyjzG23051108
Citation: LI Qi, WU Songfeng, YU Wenjie. Numerical Simulations for Force and Deformation of Utility Tunnels over a Ground Fissure[J]. INDUSTRIAL CONSTRUCTION, 2024, 54(7): 202-209. doi: 10.3724/j.gyjzG23061309

Numerical Simulations for Force and Deformation of Utility Tunnels over a Ground Fissure

doi: 10.3724/j.gyjzG23061309
  • Received Date: 2023-06-13
    Available Online: 2024-08-16
  • Taking an interval of a utility tunnel over a ground fissure in Zhengzhou as the research object, numerical simulations were conducted to analyze the force and deformation of the ground and the utility tunnel in different settlements of the hangingwall of the ground crack. The analysis results showed that due to the large stiffness of the utility tunnel, when the settlement of the hangingwall was smaller, the ground over the utility tunnel heaved; with the increase in settlement, the heave of the ground dropped and the ground even settled, and the settlement and flexure of the utility tunnel increased. When the hangingwall settled, the tensile stress occurred in the top plate of the utility tunnel, and the maximum tensile stress generated at the center of the top plate of the utility tunnel. and the maximum value of tensile stress appears in the center of the top plate; simultaneously, the compressive stress generated in the bottom plate of the utility tunnel, and the maximum compressive stress appeared in the center of the bottom plate of the utility tunnel. With the increase in settlement of the hangingwall, both of the tensile and compressive stresses increased. When the hangingwall settled, the deformation in the direction of width of the utility tunnel was between 0.1 to 10 μm, which was tiny deformation. the deformation in the direction of axle of the utility tunnel was larger and the largest was in the direction of height, however, the deformation at each joint had not regularity.
  • [1]
    薛娜, 李鸿晶, 李秀菊, 等.穿越正断层埋地管线的破坏模式分析[J].重庆大学学报, 2016, 39(2):123-130.
    [2]
    王滨, 李昕, 周晶.地震断层作用下的埋地管道等效分析模型[J].防灾减灾工程学报, 2009, 29(1):44-50.
    [3]
    贾媛媛, 路军富, 魏龙海, 等.隧道降水施工对既有市政管线隧道影响研究[J].水文地质工程地质, 2010, 37(6):43-49.
    [4]
    冯伟, 么惠全.采空塌陷区管道成灾机理分析及工程防治措施[J].水文地质工程地质, 2010, 37(3):112-115.
    [5]
    杨剑, 王恒栋.液化土中综合管廊的地震响应分析初探[J].地下空间与工程学报, 2013, 9(增刊1):1762-1769.
    [6]
    史晓军, 陈隽, 李杰.综合管廊大型振动台模型试验研究[J].地震工程与工程振动, 2008, 28(6):116-123.
    [7]
    史晓军, 陈隽, 李杰.非一致地震激励综合管廊振动台模型试验研究(Ⅰ):试验方法[J].地震工程与工程振动, 2010, 30(1):147-154.
    [8]
    陈隽, 史晓军, 李杰.非一致地震激励综合管廊振动台模型试验研究(Ⅱ):试验结果[J].地震工程与工程振动, 2010, 30(2):123-130.
    [9]
    李杰, 岳庆霞, 陈隽.综合管廊结构振动台模型试验与有限元分析研究[J].地震工程与工程振动, 2009, 29(4):41-45.
    [10]
    岳庆霞, 李杰.综合管廊地震响应研究[J].同济大学学报(自然科学版), 2009, 37(3):285-290.
    [11]
    郭恩栋, 余世舟, 吴伟.地下管道工程震害分析[J].地震工程与工程振动, 2006, 26(3):180-183.
    [12]
    郭恩栋, 王鹏宇, 刘述虹, 等.典型综合管廊体系的地震响应分析[J].地震工程与工程振动2018, 38:124-134.
    [13]
    KAWASHIMA K.Seismic design of underground structures in soft ground:a review[C]//Proceedings of IS TOKYO 99, International Symposium of International Society for Soil Mechanics and Geotechnical Engineering.Rotterdam:Balkema, 2000.
    [14]
    SHAMSABADI A, SEDARAT H, KOZAK A, et al.Seismic soil-tunnel-structure interaction analysis and retrofit of the posey-webster street tunnels[EB/OL].[2023-06-13].http://academia.edu/63464240/Sersmic.Soil_Tunnel_Interaction_Analysis_and_Retorofit_of_the_Posey_Webster_Street_Tunnels.
    [15]
    汤爱平, 李志强, 冯瑞成, 等.共同沟结构体系振动台模型试验与分析[J].哈尔滨工业大学学报, 2009, 41(6):1-5.
    [16]
    胡翔, 薛伟辰.预制预应力综合管廊受力性能试验研究[J].土木工程学报, 2010, 43(5):29-37.
    [17]
    PENG J B, CHEN L W, HUANG Q B, et al.Physical simulation of ground fissures triggered by underground fault activity[J].Engineering Geology, 2013, 155:19-30.
    [18]
    PENG J B, HUANG Q B, HU Z P, et al.A proposed solution to the ground fissure encountered in urban metro construction in Xi’an China[J].Tunneling and Underground Space Technology, 2017, 61:12-25.
    [19]
    LIU N, HUANG Q B, MA Y J, et al.Experimental study of a segmented metro tunnel in a ground fissure area[J].Soil Dynamic and Earthquake Engineering, 2017, 100:410-416.
    [20]
    LIU N, HUANG Q B, FAN W, et al.Seismic responses of a metro tunnel in a ground fissure site[J].Geo-mechanical and Engineering, 2018, 15(2):775-781.
    [21]
    贺农农, 李 攀, 邵生俊, 等.西安地铁隧道穿越饱和软黄土地段的地表沉降监测[J].地球科学与环境学报, 2012, 34(1):96-103.
    [22]
    门玉明, 张结红, 刘洪佳, 等.西安地铁隧道穿越地裂缝带的计算模型探讨[J].地球科学与环境学报, 2011, 33(1):95-100.
    [23]
    吴超. 郑州市宏明路地裂缝成因机理研究[D].郑州:华北水利水电大学, 2017.
    [24]
    刘洪佳.隐伏地裂缝作用下的盾构隧道变形破坏机制及力学模型研究[D].西安:长安大学, 2012.
    [25]
    张丹.综合管廊结构斜穿地裂缝的变形破坏机理及结构防灾设计[D].西安:长安大学, 2021.
    [26]
    吴明, 彭建兵, 贺凯等.地铁隧道受平行向地裂缝错动影响数值分析[J].工程地质学报, 2015, 23(5):1020-1029.
    [27]
    李新生, 王万平, 王静, 等.西安地裂缝两盘地层岩土物理力学性质研究[J].水文地质工程地质, 2008(2): 58-61.
    [28]
    胡志平, 王启耀, 黄强兵, 等.地裂缝活动下分段式马蹄形隧道特殊变形缝的三维变形特征试验研究[J].岩石力学与工程学报, 2009, 28(12): 2475-2481.
    [29]
    胡志平, 赵振荣, 朱启东, 等.西安某地裂缝两侧黄土物理力学性质试验[J].地球科学与环境报, 2009, 31(1): 85-88.
    [30]
    卢全中, 葛修润, 彭建兵, 等.三轴压缩条件下裂隙性黄土的破坏特征[J].岩土力学, 2009, 30(12): 3689-3694.
    [31]
    汪宝存. 郑州市地裂缝遥感识别与监测[J]. 测绘与空间地理信息, 2015, 38 (10): 64-66

    , 69.
  • Relative Articles

    [1]YANG Chunxia, CHEN Tao, ZHANG Yongtao, WAN Peng, WU Jun. Automatic Identification of Modal Parameters of Wind Turbine Towers Under Harmonic Excitation[J]. INDUSTRIAL CONSTRUCTION, 2024, 54(4): 134-141. doi: 10.3724/j.gyjzG23080713
    [2]GONG Fuyuan, HUANG Zhe, PAN Zuanfeng, ZHAO Yuxi, ZENG Bin. Multi-Physics and Multi-Scale Analysis of Prestress Loss and Deflection in Large-Scale Structures Under the Influence of Environmental Humidity[J]. INDUSTRIAL CONSTRUCTION, 2024, 54(10): 21-30. doi: 10.3724/j.gyjzG24090902
    [3]HUO Linsheng, LI Hongnan, YANG Zhuodong, ZHOU Jing. Research Advances of Intelligent Detection and Monitoring Techniques for Loosening of Steel Structure Bolted Connections[J]. INDUSTRIAL CONSTRUCTION, 2023, 53(9): 10-17. doi: 10.13204/j.gyjzG23080112
    [4]WANG Ling, YANG Jianping, GUO Xiaohua. Experiments of Determining Steel Grades by Nondestructive Inspection of Leeb Hardness[J]. INDUSTRIAL CONSTRUCTION, 2022, 52(12): 195-199,194. doi: 10.13204/j.gyjzG21101901
    [5]LI Hongyi, SHAO Weiwei, ZHU Zhanlong, YANG Weijun. Quantitative Damage Identification of Frame Structure Based on Wavelet Packet Energy Curvature Difference Under Environmental Excitation[J]. INDUSTRIAL CONSTRUCTION, 2022, 52(10): 78-83. doi: 10.13204/j.gyjzG21112501
    [6]LIU Yang, SHAO Zhiwei, ZHANG Huijie, ZHAO Weitao, ZHANG Lei, CHA Xiaoxiong. RESEARCH ON NONDESTRUCTIVE TESTING OF CFST BY ULTRASONIC TOMOGRAPHY[J]. INDUSTRIAL CONSTRUCTION, 2021, 51(10): 189-200. doi: 10.13204/j.gyjzG21020313
    [7]QU Ming, SHAO Zhiwei, ZHAO Weitao, CHA Xiaoxiong. RESEARCH ON NONDESTRUCTIVE TESTING OF GROUTING SLEEVE MEMBERS BY ULTRASONIC TOMOGRAPHY[J]. INDUSTRIAL CONSTRUCTION, 2021, 51(9): 207-215. doi: 10.13204/j.gyjzG21020316
    [8]HU Weibing, YANG Jia, WANG Long, HOU Yanfang. STUDY ON DAMAGE DETECTION AND QUANTIFICATION OF ANCIENT BUILDING TIMBER STRUCTURES BASED ON LAMINATION THEORY AND BP NEURAL NETWORKS[J]. INDUSTRIAL CONSTRUCTION, 2020, 50(11): 71-77,111. doi: 10.13204/j.gyjzG20020501
    [10]Hu Juan, Song Yifan, Sun Xiaoyi. DESIGN AND CONSTRUCTION CONTROL OF THE SPECIAL-SHAPED CAP SUPPORT FOR THE CAST-IN-PLACE LONG SPAN SELF-ANCHORED ARCH BRIDGE[J]. INDUSTRIAL CONSTRUCTION, 2014, 44(06): 85-89. doi: 10.13204/j.gyjz201406020
    [11]Mao Lisheng, Wu Jiaye, Huang Botai. STUDY ON THE IMPACT OF CONCRETE CRACK SURFACE PRESSURE ON THE DEPTH TEST RESULTS[J]. INDUSTRIAL CONSTRUCTION, 2013, 43(6): 146-149. doi: 10.13204/j.gyjz201306030
    [12]Guo Liqun, Li Anlu, Peng Xingqian. THE RESEARCH ON RAMMED-EARTH MATERIAL COMPRESSIVE STRENGTH NONDESTRUCTIVE TESTING FOR FUJIAN TULOU(EARTH-BUILDING)[J]. INDUSTRIAL CONSTRUCTION, 2013, 43(12): 167-172. doi: 10.13204/j.gyjz201312031
    [13]Gan Lin, Li Hailong. COMPARATIVE STUDY ON MODAL PARAMETER IDENTIFICATION TIME DOMAIN METHODS FOR FRAME STRUCTURE[J]. INDUSTRIAL CONSTRUCTION, 2013, 43(8): 29-33,23. doi: 10.13204/j.gyjz201308006
    [14]LüJiangen, Wang Ronghui. DETERIORATION EXAMINATION AND REINFORCEMENT OF CFST TIED ARCH BRIDGE[J]. INDUSTRIAL CONSTRUCTION, 2012, 42(8): 158-161. doi: 10.13204/j.gyjz201208031
    [15]Liu Xiang, Gao Zhenning, Li Hai. MODAL ANALYSIS OF MW GRADE WIND GENERATOR TOWER[J]. INDUSTRIAL CONSTRUCTION, 2012, 42(2): 62-65. doi: 10.13204/j.gyjz201202014
    [16]Sui Lili, Quan Xinrui, Xing Feng, Zhang Hongyuan. STATE-OF-THE-ART OF RESEARCH ON DURABILITY OF POST-TENSIONED CONCRETE BRIDGES[J]. INDUSTRIAL CONSTRUCTION, 2011, 41(1): 105-111. doi: 10.13204/j.gyjz201101025
    [17]Xu Shidai, Wang Fengquan. MODE PARAMETER IDENTIFICATION OF ENGINEERING STRUCTURE BASED ON ARMA MODEL[J]. INDUSTRIAL CONSTRUCTION, 2007, 37(5): 20-22. doi: 10.13204/j.gyjz200705005
    [18]Wang Gang, Yao Qianfeng. STUDY ON MODAL IDENTIFICATION OF FRAME STRUCTURE UNDER AMBIENT EXCITATION[J]. INDUSTRIAL CONSTRUCTION, 2004, 34(12): 45-47. doi: 10.13204/j.gyjz200412012
  • Cited by

    Periodical cited type(1)

    1. 张方圆,亓兴军,黄岩,张炜. 基于模态柔度的损伤连续梁桥虚拟荷载试验方法研究. 河北工业科技. 2024(06): 434-442 .

    Other cited types(0)

  • Created with Highcharts 5.0.7Amount of accessChart context menuAbstract Views, HTML Views, PDF Downloads StatisticsAbstract ViewsHTML ViewsPDF Downloads2024-042024-052024-062024-072024-082024-092024-102024-112024-122025-012025-022025-03051015202530
    Created with Highcharts 5.0.7Chart context menuAccess Class DistributionFULLTEXT: 7.0 %FULLTEXT: 7.0 %META: 93.0 %META: 93.0 %FULLTEXTMETA
    Created with Highcharts 5.0.7Chart context menuAccess Area Distribution其他: 12.8 %其他: 12.8 %China: 0.7 %China: 0.7 %三门峡: 1.0 %三门峡: 1.0 %上海: 2.8 %上海: 2.8 %信阳: 0.3 %信阳: 0.3 %北京: 4.2 %北京: 4.2 %南京: 4.5 %南京: 4.5 %厦门: 2.1 %厦门: 2.1 %台州: 0.3 %台州: 0.3 %合肥: 0.3 %合肥: 0.3 %天津: 1.7 %天津: 1.7 %太原: 0.3 %太原: 0.3 %威海: 0.3 %威海: 0.3 %安康: 0.3 %安康: 0.3 %常德: 1.0 %常德: 1.0 %廊坊: 0.7 %廊坊: 0.7 %张家口: 1.4 %张家口: 1.4 %徐州: 0.7 %徐州: 0.7 %德罕: 1.0 %德罕: 1.0 %成都: 0.3 %成都: 0.3 %昆明: 1.4 %昆明: 1.4 %杭州: 1.0 %杭州: 1.0 %桂林: 0.7 %桂林: 0.7 %武汉: 1.0 %武汉: 1.0 %江门: 4.2 %江门: 4.2 %洛阳: 0.3 %洛阳: 0.3 %济南: 0.7 %济南: 0.7 %温州: 0.7 %温州: 0.7 %漯河: 1.7 %漯河: 1.7 %珠海: 1.0 %珠海: 1.0 %石家庄: 0.3 %石家庄: 0.3 %福州: 1.0 %福州: 1.0 %绵阳: 0.7 %绵阳: 0.7 %芒廷维尤: 36.0 %芒廷维尤: 36.0 %芝加哥: 0.3 %芝加哥: 0.3 %衡阳: 0.3 %衡阳: 0.3 %西宁: 7.3 %西宁: 7.3 %运城: 1.7 %运城: 1.7 %郑州: 0.3 %郑州: 0.3 %重庆: 0.3 %重庆: 0.3 %银川: 0.3 %银川: 0.3 %长春: 0.3 %长春: 0.3 %长沙: 1.0 %长沙: 1.0 %其他China三门峡上海信阳北京南京厦门台州合肥天津太原威海安康常德廊坊张家口徐州德罕成都昆明杭州桂林武汉江门洛阳济南温州漯河珠海石家庄福州绵阳芒廷维尤芝加哥衡阳西宁运城郑州重庆银川长春长沙

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (43) PDF downloads(1) Cited by(1)
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return