Citation: | XIE Xiaosong, SU Fangmei, LI Yonghua. A Modified P–Y Model for Small Diameter Rigid Piles of Photovoltaic Supports in Sand[J]. INDUSTRIAL CONSTRUCTION, 2024, 54(3): 191-199. doi: 10.3724/j.gyjzG23033014 |
[1] |
OTHMAN A R, RUSHDI A T. Assessment of roof top BIPV application of sample houses in Shah Alam[J]. Asian Journal of Quality of Life, 2018, 3(9):25-35.
|
[2] |
张文达.广州地区岭南传统建筑光伏一体化设计策略研究[D].广州:华南理工大学, 2018.
|
[3] |
刘丰敏,杜风雷.光伏支架基桩础水平承载力计算方法与试验研究[C]//第十届深基础工程发展论坛论文集.北京:中国建筑工业出版社, 2020:185-187.
|
[4] |
丁晓勇,陈屏翰,邢皓枫.光伏支架下钢管桩现场载荷试验及其承载特性分析[C]//工业建筑2022年学术交流会论文集, 2022.
|
[5] |
居俊.软土中桩顶水平承载离心模型试验[J].工业建筑, 2017, 47(8):100-105.
|
[6] |
李洪江,童立元,刘松玉,等.大直径超长灌注桩水平承载性能的参数敏感性[J].岩土力学, 2018, 39(5):1825-1833.
|
[7] |
王学亮.光伏支架预应力管基桩础裂缝调查及分析[J].建材与装饰, 2020(18):44, 47.
|
[8] |
AGARWAL A, IRTAZA H, KHAN M A. Experimental study of pulling-out capacity of foundation for solar array mounting frames[J]. Indian Geotechnical Journal, 2020, 51(2):414-420.
|
[9] |
REESE L C, COX W R, KOOP F D. Analysis of Laterally Loaded Piles in Sand[C]//Proceedings of 6th Annual Offshore Technology Conference. 1974:473-485.
|
[10] |
American Petroleum Institute. Recommended practice for planning, designing and constructing fixed offshore platformsworking stress design[S]. Washington:American Petroleum Institute Publishing Services, 2005.
|
[11] |
张海洋,刘润,袁宇,等.海上大直径单基桩础p-y曲线修正[J].水利学报, 2020, 51(2):201-211.
|
[12] |
薛佩佩,王栋,郑敬宾等.水平荷载作用下砂土中非柔性桩的p-y曲线修正[J].中国海洋大学学报(自然科学版), 2023, 53(2):134-140.
|
[13] |
LESNY K, WIEMANN J. Finite-element-modelling of large diameter monopiles for offshore wind energy converters[C]//Geocongress 2006:Geotechnical Engineering in the Information Technology. 2006.
|
[14] |
朱斌,熊根,刘晋超,等.砂土中大直径单桩水平受荷离心模型试验[J].岩土工程学报, 2013, 35(10):1807-1815.
|
[15] |
朱斌,杨永垚,余振刚,等.海洋高基桩础水平单调及循环加载现场试验[J].岩土工程学报, 2012, 34(6):1028-1037.
|
[16] |
朱斌,朱瑞燕,罗军,等.海洋高基桩础水平大变位性状模型试验研究[J].岩土工程学报, 2010, 32(4):521-530.
|
[17] |
付毳,庄一舟,陈宝春,等.砂土中微型桩p-y曲线研究[J].地下空间与工程学报, 2017, 13(5):1271-1279.
|
[18] |
SØRENSEN S P H. Soil-structure interaction for nonslender, large-diameter offshore monopoles[D]. Alborg:Aalborg University, 2012.
|
[19] |
KALLEHAVE D, THILSTED C L, LIINGAARD M A. Modification of the API p-y formulation of initial stiffness of sand[C]//7th International Conference:Offshore Site Investigation and Geotechnics:Integrated Geotechnologies-Present and Future. 2012.
|
[20] |
胡中波,翟恩地,罗仑博,等.基于静载试验的海上风电钢管桩砂土p-y曲线研究[J].太阳能学报, 2019, 40(12):3571-3577.
|
[21] |
罗仑博,王媛,翟恩地,等.基于现场试验的钢管桩分层土p-y曲线研究[J].太阳能学报, 2019, 40(11):3258-3264.
|
[22] |
孙毅龙,许成顺,杜修力,等.海上风电大直径单桩的修正p-y曲线模型[J].工程力学, 2021, 38(4):44-53.
|
[23] |
陈晓路,管春雨,张管武,等.近海风力机水平受荷单桩简化p-y曲线研究[J].太阳能学报, 2022, 43(5):366-371.
|
[24] |
张小玲,朱冬至,许成顺,等.强度弱化条件下饱和砂土地基中桩-土相互作用p-y曲线研究[J].岩土力学, 2020, 41(7):2252-2260.
|
[25] |
唐亮,刘书幸,凌贤长,等.土体液化过程中桩-土动力相互作用p-y曲线模型[J].自然灾害学报, 2022, 31(2):156-164.
|
[26] |
胡安峰,南博文,陈缘,等.基于砂土刚度衰减模型的修正p-y曲线法[J].上海交通大学学报, 2020, 54(12):1316-1323.
|
[27] |
刘晋超,熊根,朱斌,等.砂土海床中大直径单桩水平承载与变形特性[J].岩土力学, 2015, 36(2):591-599.
|
[28] |
胡烨之,鲁子爱,翟秋,等.软黏土中大直径加翼桩p-y曲线探讨[J].水利水电技术, 2018, 49(5):143-152.
|
[29] |
孟晓伟,翟恩地,许成顺. p-y曲线对成层土体中大直径单桩的适用性研究[J].海洋技术学报, 2019, 38(2):105-112.
|
[30] |
陈国荣.有限单元法原理及运用[M].北京:科学出版社, 2009.
|
[31] |
余世章,李飒.复合荷载下海上钢管基桩础p-y曲线法研究[J].水力发电学报, 2018, 37(1):101-109.
|
[32] |
LI W C, ZHU B T, YANG M. Static response of monopile to lateral load in overconsolidated dense sand[J]. Journal of Geotechnical&Geoenvironmental Engineering, 2017, 143(7):1-12.
|
[33] |
GEORGIADIS M. Development of p-y curves for layered soils[C]//Geotechnical Practice in Offshore Engineering. New York:American Society of Civil Engineers. 1983:536-545.
|
[34] |
TERZAGHI K. Evaluation of coefficient of subgrade reaction[J]. Géotechnique, 1955, 5(4):197-226.
|
[35] |
KIM B T, KIM N K, LEE W J, et al. Experimental load-transfer curves of laterally loaded piles in Nak-Dong river sand[J]. Journal of Geotechnical&Geoenvironmental Engineering, 2004, 130(4):416-425.
|
[36] |
ASHFORD S A, JUIRNARONGRIT T. Evaluation of pile diameter effect on initial modulus of subgrade reaction[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2003, 129(3):234-242.
|
[37] |
FAN C C, LONG J H. Assessment of existing methods for predicting soil response of laterally loaded piles in sand[J]. Computers and Geotechnics, 2005, 32(4):274-289.
|
[38] |
LING L F. Back analysis of lateral load test on piles[R]. Auckland:Faculty of Engineering, University of Auckland, 1988.
|
[39] |
孙希,黄维平.基于实测数据的海上风电大直径桩p-y曲线研究[J].太阳能学报, 2016, 37(1):216-221.
|
[40] |
BROMS B B. Lateral resistance of piles in cohesionless soils[J]. Journal of the Soil Mechanics and Foundations Division, 1964, 90(3):123-156.
|
[41] |
GUO W D, ZHU B T. Laterally loaded fixed-head piles in sand[C]//Proc., 9th Australia-New Zealand Conf. on Geomechanics. 2004:88-94.
|
[42] |
KLINKVORT R T, HEDEDAL O, SPRINGMAN S M. Scaling issues in centrifuge modelling of monopiles[J]. International Journal of Physical Modelling in Geotechnics, 2013, 13(2):38-49.
|
[43] |
鲍金虎,苏静波,吴锋,等.深厚软黏土地基中大直径单基桩础现场水平受荷试验及p-y曲线适用性研究[J].河海大学学报(自然科学版), 2023, 51(3):127-134.
|