Source Journal of Chinese Scientific and Technical Papers
Included as T2 Level in the High-Quality Science and Technology Journals in the Field of Architectural Science
Core Journal of RCCSE
Included in the CAS Content Collection
Included in the JST China
Indexed in World Journal Clout Index (WJCI) Report
Zhang Tiejun, Yan Yuelan. STUDY ON LOCALIZATION OF MANUFACTURE OF UNDERRELAXATION PRESTRESSED STEEL SHANDS FOR CONTAINMENT OF Ling'ao NUCLEAR POWER PLANT (PHASE-Ⅱ) AND ITS USE[J]. INDUSTRIAL CONSTRUCTION, 2009, 39(4): 61-66. doi: 10.13204/j.gyjz200904015
Citation: XING Wei, ZHOU Feng, ZHU Rui, CHEN Tingzhu. Study on Microbial Cure and Stabilization Effect and Mechanisms of Zinc-Contaminated Silt[J]. INDUSTRIAL CONSTRUCTION, 2024, 54(9): 32-42. doi: 10.3724/j.gyjzG23031904

Study on Microbial Cure and Stabilization Effect and Mechanisms of Zinc-Contaminated Silt

doi: 10.3724/j.gyjzG23031904
  • Received Date: 2023-03-19
    Available Online: 2024-10-18
  • With the rapid development of industry, the problem of soil contaminated by heavy metals, represented by Zn, has been becoming more and more prominent, and it is important to study the treatment methods and cured effects on Zn-contaminated silt. Based on the microbial induced calcium carbonate precipitation (MICP) technique, a series of indoor experiments on microbial-cemented Zn-contaminated soil were conducted to reveal the mechanism of microbial cementation of Zn-contaminated soil from the perspective of microstructural evolution. The results showed that microbial mineralization significantly improved the mechanical properties of Zn-contaminated soil, and reduced the permeability coefficient of Zn-contaminated soil by an order of magnitude, significantly reduced the leaching concentration of Zn ions and the percentage of the exchangeable Zn content. It mainly might produce calcite crystals with colloidal properties during the microbial mineralization process, and zinc ions were fixed and tranfered to zinc carbonate, which made the microbial-cemented Zn-contaminated soil achieve the dual objectives of contaminant control and strength enhancement simultaneously. The microbial cure and stabilization of Zn-contaminated silt were most effective when the cementitious solution concentration was 1 mol/L, the cementitious solution ratio (CaCl2∶Urea) was 1∶2, and the curing age was 28 d.
  • [1]
    杜延军, 金飞, 刘松玉, 等. 重金属工业污染场地固化/稳定处理研究进展[J]. 岩土力学, 2011, 32(1): 116-124.
    [2]
    何稼, 楚剑, 刘汉龙, 等. 微生物岩土技术的研究进展[J]. 岩土工程学报, 2016, 38(4): 643-653.
    [3]
    陈云敏, 施建勇, 朱伟, 等. 环境岩土工程研究综述[J]. 土木工程学报, 2012, 45(4): 165-182.
    [4]
    钱春香, 王明明, 许燕波. 土壤重金属污染现状及微生物修复技术研究进展[J]. 东南大学学报(自然科学版), 2013, 43(3):669-674.
    [5]
    GAO Y F, MENG H, HE J, et al. Field trial on use of soybean crude extract for carbonate precipitation and wind erosion control of sandy soil[J]. Journal of Central South University, 2020, 27(11): 3320-3333.
    [6]
    CHEN H M, MIN F F, HU X, et al. Biochar assists phosphate solubilizing bacteria to resist combined Pb and Cd stress by promoting acid secretion and extracellular electron transfer[J/OL]. Journal of Hazardous Materials, 2023, 452[2023-03-19]. https://doi.org/10.1016/j.jhazmat.2023.131176.
    [7]
    许朝阳, 张贺, 杨贺, 等. MICP技术对 Mn(Ⅱ)、Cr(Ⅵ)污染土壤的修复效果[J]. 扬州大学学报(自然科学版), 2020, 23(2): 73-78.
    [8]
    NASRIN J, ABDOLREZA A, HOSSEIN A A, et al. Removal of heavy metals Zinc, Lead, and Cadmium by biomineralization of urease-producing bacteria isolated from Iranian mine calcareous soils[J]. Journal of Soil Science and Plant Nutrition, 2020, 20(3): 206-219.
    [9]
    FANG L Y, NIU Q J, CHENG L, et al. Ca-mediated alleviation of Cd2+ induced toxicity and improved Cd2+ biomineralization by Sporosarcina pasteurii[J/OL]. Science of the Total Environment, 2021, 787[2023-03-19].https://doi.org/10.1016/j.scitotenv.2021.147627.
    [10]
    李驰, 田蕾, 董彩环, 等. MICP技术联合多孔硅吸附材料对锌铅复合污染土固化/稳定化修复的试验研究[J]. 岩土力学, 2022, 43(2): 307-316.
    [11]
    邵光辉, 戴浩然, 郭恒君. 微生物固化和稳定化铅污染粉土的强度与污染物浸出特性[J]. 林业工程学报, 2022, 7(5): 161-168.
    [12]
    许朝阳, 杨贺, 黄建璋, 等. 生物修复Cu2+、Pb2+污染土的稳定性[J]. 工业建筑, 2018, 48(7): 33-37.
    [13]
    WEI M L, DU Y J, REDDY K R, et al. Effects of freeze-thaw on characteristics of new KMP binder stabilized Zn- and Pb-contaminated soils[J]. Environmental Science and Pollution Research International, 2015, 22:19473-19483.
    [14]
    许朝阳, 柏庭春, 黄建璋, 等. 铁细菌修复锌污染土壤的试验研究[J]. 工业建筑, 2016, 46(6): 90-93.
    [15]
    JASON T D, MICHAEL B F, KLAUS N. Microbially induced cementation to control sand response to undrained shear[J/OL]. Journal of Geotechnical and Geoenvironmental Engineering, 2006, 132(11) [2023-03-19]. https://doi.org/10.1061/(ASCE)1090-0241(2006)132:11(1381).
    [16]
    刘璐, 沈扬, 刘汉龙, 等. 微生物胶结在防治堤坝破坏中的应用研究[J]. 岩土力学, 2016, 37(12): 3410-3416.
    [17]
    ACHAL V, PAN X. Influence of calcium sources on microbially induced calcium carbonate precipitation by bacillus sp. CR2[J]. Applied Biochemistry and Biotechnology, 2014, 173(1):307-317.
    [18]
    刘汉龙, 肖鹏, 肖杨, 等. 微生物岩土技术及其应用研究新进展[J]. 土木与环境工程学报(中英文), 2019, 41(1): 1-14.
    [19]
    RAMACHANDRAN S K, RAMAKRISHNAN V, BANG S S. Remediation of concrete using micro-organisms[J]. ACI Materials Journal, 2001, 98(1): 3-9.
    [20]
    WHIFFIN V S. Microbial CaCO3 precipitation for the production of biocement[D]. Perth: Murdoch University, 2004.
    [21]
    马瑞男, 郭红仙, 程晓辉, 等. 微生物拌和加固钙质砂渗透特性试验研究[J]. 岩土力学, 2018, 39(增刊2): 217-223.
    [22]
    TESSIER A, CAMPBELL P, BISSON M. Sequential extraction procedure for the speciation of particulate trace metals[J]. Analytical Chemistry, 1979, 51(7): 844-851.
    [23]
    US Environmental Protection Agency(US EPA). Test methods for evaluating solid waste, physical/chemical methods. method 1311: toxicity characteristic leaching procedure:EPA SW-846[S]. Washington DC: US EPA, 1992.
    [24]
    刘祖典, 李靖, 郭增玉, 等. 陕西关中黄土变形特性和变形参数的探讨[J]. 岩土工程学报, 1984, 6(3): 24-34.
    [25]
    吴旭阳, 梁庆国, 牛富俊, 等. 黄土剪切应变硬化-软化分类试验研究[J]. 地下空间与工程学报, 2017, 13(6): 1457-1466.
    [26]
    NEMATI M, GREENE E A, VOORDOUW G. Permeability profile modification using bacterially formed calcium carbonate: comparison with enzymic option[J]. Process Biochemistry, 2005, 40(2): 925-933.
    [27]
    KUNST F, RAPOPORT G. Salt stress is an environmental signal affecting degradative enzyme synthesis in Bacillus subtilis[J]. Journal of Bacteriology, 1995, 177(9): 2403-2407.
    [28]
    XU G J, LI D W, JIAO B Q, et al. Biomineralization of a calcifying ureolytic bacterium Microbacterium sp. GM-1[J/OL]. Electronic Journal of Biotechnology, 2017, 25(25) [2023-03-19].https://doi.org/10.1016/J.EJBT.2016.10.008.
    [29]
    PAKBAZ M S, BEHZADIPOUR G R. Evaluation of shear strength parameters of sandy soils upon microbial treatment[J]. Geomicrobiology Journal, 2018, 35(8): 721-726.
    [30]
    QABANY A A, SOGA K, SANTAMARINA C. Factors affecting efficiency of microbially induced calcite precipitation[J]. Journal of Geotechnical & Geoenvironmental Engineering, 2012, 138(8): 992-1001.
    [31]
    彭劼, 温智力, 刘志明, 等. 微生物诱导碳酸钙沉积加固有机质黏土的试验研究[J]. 岩土工程学报, 2019, 41(4): 733-740.
    [32]
    刘清, 王子健, 汤鸿霄. 重金属形态与生物毒性及生物有效性关系的研究进展[J]. 环境科学, 1996, 17(1): 89-92.
    [33]
    尹黎阳, 唐朝生, 谢约翰, 等. 微生物矿化作用改善岩土材料性能的影响因素[J]. 岩土力学, 2019, 40(7): 2525-2546.
    [34]
    MORTENSEN B M, HABER M J, DEJONG J T. Effects of environmental factors on microbial induced calcium carbonate precipitation[J]. Journal of Applied Microbiology, 2011, 111(2): 338-349.
    [35]
    邵光辉, 尤婷, 赵志峰, 等. 微生物注浆固化粉土的微观结构与作用机理[J]. 南京林业大学学报(自然科学版), 2017, 41(2): 129-135.
    [36]
    AL QABANY A, SOGA K, SANTAMARINA C. Factors affecting efficiency of microbially induced calcite precipitation[J]. Journal of Geotechnical & Geoenvironmental Engineering, 2012, 138(8): 992-1001.
    [37]
    王绪民, 王铖, 崔芮. 微生物在不同营养盐环境下矿化产物研究[J].工业建筑, 2019, 49(10): 208-212.
    [38]
    刘汉龙, 赵常, 肖杨. 微生物矿化反应原理、沉积与破坏机制及理论:研究进展与挑战[J/OL]. 岩土工程学报, 2023[2023-03-19].https://doi.org/10.

    11779/CJGE20230004.
  • Relative Articles

    [1]ZHOU Zhijun, TIAN Yeqing, ZHANG Mingyi, WANG Kangchao, ZHU Shanshan. Analysis on Bearing Characteristics of Pile Groups with Post-Grouting at Pile Ends in Loess Areas[J]. INDUSTRIAL CONSTRUCTION, 2024, 54(3): 182-190. doi: 10.3724/j.gyjzG22090209
    [2]ZHOU Peng, MA Hailong. NUMERICAL ANALYSIS ON LOAD TRANSFER OF TENSILE PILES AND BOTTOM-UPLIFTED PILES[J]. INDUSTRIAL CONSTRUCTION, 2021, 51(3): 147-152. doi: 10.13204/j.gyjzG20040901
    [3]MA Hailong, BAO Yanran, MA Yufei, YAO Wenhong. LOAD-TRANSFER LAWS OF A SINGLE PILE AND DETERMINATION OF REASONABLE POSITIONS FOR GROUTING ON PILE SIDES[J]. INDUSTRIAL CONSTRUCTION, 2021, 51(9): 173-176,196. doi: 10.13204/j.gyjzG20091705
    [4]Chen Lanyun, Shu Zhong, Yi Nangai. NUMERICAL SIMULATION OF VERTICAL BEARING CAPACITY OF POST-GROUTING BORED PILES[J]. INDUSTRIAL CONSTRUCTION, 2011, 41(7): 78-81. doi: 10.13204/j.gyjz201107018
    [5]Qiang Xiaojun, Wan Changhong, Jiang Huihuang. ANALYSIS AND COMPARISON OF MODEL TEST REINFORCED EMBANKMENT BY PILE NET WITH PILE CAP[J]. INDUSTRIAL CONSTRUCTION, 2009, 39(5): 75-80. doi: 10.13204/j.gyjz200905016
    [6]Shen Baohan, Wang Haiyan, Liu Zhenliang, He Dexin. TEST STUDY OF DX PILE WITH FOUR BULBS AT XI'AN SXD PROJECT[J]. INDUSTRIAL CONSTRUCTION, 2009, 39(2): 1-7. doi: 10.13204/j.gyjz200902001
    [7]Shen Baohan. DX PILE AND ITS SEVERAL PROBLEMS OF VERTICAL BEARING CAPACITIES[J]. INDUSTRIAL CONSTRUCTION, 2009, 39(8): 84-95. doi: 10.13204/j.gyjz200908022
    [8]Dong Jinrong. INFLUENCE OF PILE BOTTOM SLIME ON SKIN FRICTION AND BEARING CAPACITY ESTIMATION TO PILE[J]. INDUSTRIAL CONSTRUCTION, 2009, 39(4): 93-97. doi: 10.13204/j.gyjz200904021
    [9]Yi Yaolin, Liu Songyu. NUMERICAL ANALYSIS OF BEHAVIOR OF T-SHAPED CEMENT-SOIL DEEP MIXING PILE COMPOSITE FOUNDATION UNDER EMBANKMENT LOADS[J]. INDUSTRIAL CONSTRUCTION, 2008, 38(11): 63-68. doi: 10.13204/j.gyjz200811016
    [10]Shen Baohan, Sun Junping, Wang Yan. THE CALCULATION OF VERTICAL COMPRESSIONAL BEARING CAPACITY OF DX PILE[J]. INDUSTRIAL CONSTRUCTION, 2008, 38(5): 18-22. doi: 10.13204/j.gyjz200805004
    [11]Shen Baohan. THE CHARACTERISTICS OF LOAD TRANSFER OF DX PILES[J]. INDUSTRIAL CONSTRUCTION, 2008, 38(5): 5-12. doi: 10.13204/j.gyjz200805002
    [12]Luo Chunbo, Zhu Xiangrong, Kong Qinghua, Sun Jinyue. PILE-SOIL INTERACTION ANALYSIS OF O-CELL TESTING PILE BASED ON ELASTIC THEORY[J]. INDUSTRIAL CONSTRUCTION, 2007, 37(8): 60-63. doi: 10.13204/j.gyjz200708016
    [13]Zhang Shimin, Yu Feng. LOAD TRANSFER AND BEARING CAPACITY OF PILES JACKED INTO SANDY DEPOSITS[J]. INDUSTRIAL CONSTRUCTION, 2007, 37(5): 61-64. doi: 10.13204/j.gyjz200705016
    [14]Peng Fuming, Yue Qingrui, Hao Jiping, Yang Yongxin. LOAD TRANSFER ANALYSIS OF STEEL STRUCTURES REPAIRED WITH FRP[J]. INDUSTRIAL CONSTRUCTION, 2005, 35(8): 26-30,109. doi: 10.13204/j.gyjz200508006
    [15]Pei Jie, Shui Weihou, Cao Hui. NEW MODEL OF LONG PILE LOAD TRANSFER FOR SOFT FOUNDATION IN SHANGHAI[J]. INDUSTRIAL CONSTRUCTION, 2005, 35(7): 50-54,49. doi: 10.13204/j.gyjz200507015
    [16]Li Haiwang, Ju Yuwen, Zhao Mingwei, Liang Renwang. ANALYSIS AND FIELD STATIC LOADING TESTS OF CAST-IN-PLACE PILES WITH BRANCHES AND PLATES[J]. INDUSTRIAL CONSTRUCTION, 2004, 34(3): 21-23. doi: 10.13204/j.gyjz200403006
    [17]Wu Xiongzhi, An Xinzheng, Wu Ruizhi. STUDY ON BEARING MECHANISM OF SOIL-CEMENT PILE[J]. INDUSTRIAL CONSTRUCTION, 2004, 34(6): 42-43,41. doi: 10.13204/j.gyjz200406014
    [18]Chun Lun, Wang Haiyan, Shen Baohan, He Dexin, Sun Junping. FULL-SCALE TEST STUDY ON UNIT SHAFT RESISTANCE AND UNIT END RESISTANCE OF DX PILES CAST-IN-SITU[J]. INDUSTRIAL CONSTRUCTION, 2004, 34(3): 15-18,39. doi: 10.13204/j.gyjz200403004
    [19]Chen Lun, Wang Haiyan, Shen Baohan, He Dexin, Sun Junping. FULL-SCALE TEST STUDY ON BEARING MECHANISM AND LOAD TRANSMISSION MODE OF DX PILES CAST-IN-SITU[J]. INDUSTRIAL CONSTRUCTION, 2004, 34(3): 5-8. doi: 10.13204/j.gyjz200403002
  • Created with Highcharts 5.0.7Amount of accessChart context menuAbstract Views, HTML Views, PDF Downloads StatisticsAbstract ViewsHTML ViewsPDF Downloads2024-042024-052024-062024-072024-082024-092024-102024-112024-122025-012025-022025-0302.557.51012.515
    Created with Highcharts 5.0.7Chart context menuAccess Class DistributionFULLTEXT: 18.9 %FULLTEXT: 18.9 %META: 81.1 %META: 81.1 %FULLTEXTMETA
    Created with Highcharts 5.0.7Chart context menuAccess Area Distribution其他: 8.5 %其他: 8.5 %China: 5.7 %China: 5.7 %北京: 4.7 %北京: 4.7 %十堰: 0.9 %十堰: 0.9 %南京: 0.9 %南京: 0.9 %嘉兴: 0.9 %嘉兴: 0.9 %常州: 0.9 %常州: 0.9 %张家口: 5.7 %张家口: 5.7 %扬州: 2.8 %扬州: 2.8 %杭州: 1.9 %杭州: 1.9 %温州: 0.9 %温州: 0.9 %漯河: 4.7 %漯河: 4.7 %芒廷维尤: 31.1 %芒廷维尤: 31.1 %芝加哥: 0.9 %芝加哥: 0.9 %西宁: 17.9 %西宁: 17.9 %西雅图: 0.9 %西雅图: 0.9 %连云港: 1.9 %连云港: 1.9 %邯郸: 0.9 %邯郸: 0.9 %郑州: 2.8 %郑州: 2.8 %阳泉: 4.7 %阳泉: 4.7 %其他China北京十堰南京嘉兴常州张家口扬州杭州温州漯河芒廷维尤芝加哥西宁西雅图连云港邯郸郑州阳泉

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (41) PDF downloads(0) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return