Source Journal of Chinese Scientific and Technical Papers
Included as T2 Level in the High-Quality Science and Technology Journals in the Field of Architectural Science
Core Journal of RCCSE
Included in the CAS Content Collection
Included in the JST China
Indexed in World Journal Clout Index (WJCI) Report
Zhang Tiejun, Yan Yuelan. STUDY ON LOCALIZATION OF MANUFACTURE OF UNDERRELAXATION PRESTRESSED STEEL SHANDS FOR CONTAINMENT OF Ling'ao NUCLEAR POWER PLANT (PHASE-Ⅱ) AND ITS USE[J]. INDUSTRIAL CONSTRUCTION, 2009, 39(4): 61-66. doi: 10.13204/j.gyjz200904015
Citation: ZHU Yanpeng, LYU Yubao, FANG Guangwen, WANG Hao, ZHANG Zhiqi. Experimental Study on Frost Resistance of Fluidized Solidifiable Soil Integrated by Collapsible Loess and Red Sandstone[J]. INDUSTRIAL CONSTRUCTION, 2024, 54(12): 194-203. doi: 10.3724/j.gyjzG22101715

Experimental Study on Frost Resistance of Fluidized Solidifiable Soil Integrated by Collapsible Loess and Red Sandstone

doi: 10.3724/j.gyjzG22101715
  • Received Date: 2022-10-17
    Available Online: 2025-01-04
  • Publish Date: 2024-12-20
  • Freeze-thaw cycles are one of the important factors causing mechanical damage of soil. To study the strength characteristics of fluidized solidifiable soil integrated by collapsible loess and red sandstone experienced freeze-thaw cycles, mechanical and scanning electron microscope tests were conducted on the fluidized solidifiable soil experienced different rounds of freeze-thaw cycles by indoor tests, and the variable regularities of physical and mechanical parameters and energy dissipation mechanisms of the fluidized solidifiable soil with different mix proportions experienced freeze-thaw cycles were analyzed. The results indicated that the red sandstone content, water content and cement content increased with the rounds of freeze-thaw cycles and had different effects on compressive strength. To mix red sandstone could effectively improve the compressive strength of fluidized solidifiable soil. The relation between compressive strength and the rounds of freeze-thaw cycles complied with a decreasing exponential function relation. The main mechanical indexes, including elastic moduli, masses, cohesion, internal friction angles and strain energy densities, decreased with the increase in the red sandstone content and the rounds of freeze-thaw cycles. Combining with the results by SEM, the variable regularity of microstructure of fluidized solidifiable soil damage by freeze-thaw cycles was analyzed. That freeze-thaw cycles could change the microstructure constructed by red sandstone particles was pointed out, and thus the mechanism of energy dissipation of fluidized solidifiable soil experienced freeze-thaw cycles was clarified.
  • [1]
    王晋, 张小冬, 钟娅, 等. 自密实流态固化土在异形基槽结构回填工程中的应用研究[C]//2021年全国土木工程施工技术交流会论文集(上册). 2021:609-612.
    [2]
    王丹, 刘恩龙, 杨成松.冻融循环作用下冻结掺和土料动力特性研究[J]. 冰川冻土, 2022, 44(2): 1-11.
    [3]
    宁宝宽, 陈四利, 刘斌. 冻融循环对水泥土力学性质影响的研究[J]. 低温建筑技术, 2004(5): 10-12.
    [4]
    张海燕, 韩苏建, 李元婷, 等. 土壤固化剂用于渠道防渗工程初探[J]. 水土保持通报, 2004, 24(1):40-42.
    [5]
    张经双, 段雪雷. 冻融循环下不同龄期水泥土损伤特性和能量耗散[J]. 硅酸盐通报, 2019, 38(7):2 144

    -2 151.
    [6]
    陈四利, 赵百超, 侯芮. 冻融循环作用下水泥土疲劳特性[J]. 沈阳工业大学学报, 2021, 43(6): 692-697.
    [7]
    孙静, 公茂盛, 熊宏强, 等. 冻融循环对粉砂土动力特性影响的试验研究[J]. 岩土力学, 2020, 41(3): 747-754.
    [8]
    穆彦虎, 陈涛, 陈国良, 等. 冻融循环对黏质粗粒土抗剪强度影响的试验研究[J]. 防灾减灾工程学报, 2019, 39(3): 375-386.
    [9]
    冯忠民. 大连湾海底淤泥流动固化土室内试验研究[D]. 保定:河北大学, 2020.
    [10]
    STERPI D. Effect of freeze-thaw cycles on the hydraulic conductivity of a compacted clayey silt and influence of the compaction energy[J]. Soils and Foundations, 2015, 55(5): 1326-1332.
    [11]
    崔宏环, 何静云, 张振寰, 等. 季节性冻土区水泥固化土冻融损伤模型[J]. 工业建筑, 2021, 51(5): 158-163.
    [12]
    CHAMBERLAIN E J, GOW A J. Effect of freezing and thawing on the permeability and structure of soils[J]. Engineering Geology, 1979, 13(1): 73-92.
    [13]
    丁智, 张孟雅, 魏新江, 等. 地铁循环荷载下冻融软土孔压发展及微观结构研究[J]. 岩石力学与工程学报, 2016, 35(11): 2328-2336.
    [14]
    NASSIF A Y, PETROU M F. Influence of cold weather during casting and curing on the stiffness and strength of concrete[J]. Construction and Building Materials, 2013, 44(7): 161-167.
    [15]
    CHOI H, ZHANG W Y, HAMA Y. Method for determining early-age frost damage of concrete by using air-permeability index and influence of early-age frost damage on concrete durability[J]. Construction and Building Materials, 2017, 153:630-639.
    [16]
    DING J H, FENG Z M. Analysis of influencing factors of silt solidified soil in flowing state[J]. World Journal of Engineering and Technology, 2019, 7(3): 455-464.
    [17]
    侯运炳, 丁鹏初, 韩冬, 等. 冻融循环对全尾砂固结体强度与微观孔结构的影响[J]. 矿业研究与开发, 2019, 39(8): 68-73.
    [18]
    张敏霞. 循环荷载作用下水泥土的疲劳特性及其损伤行为研究[D].福州:福州大学, 2005.
    [19]
    LAKE C B, YOUSIF A M, JAMSHIDI R J. Examining freeze/thaw effects on performance and morphology of lightly cemented soil[J]. Cold Regions Science and Technology,2016, 134: 33-44.
    [20]
    中华人民共和国住房和城乡建设部. 土工试验方法标准:GB/T 50123—2019[S]. 北京:中国计划出版社,2019.
    [21]
    朱彦鹏, 马滔, 杨校辉, 等.基于正交设计的红砂岩改良土抗剪强度试验和回归分析[J]. 岩土工程学报, 2018, 40(增刊1): 87-92.
    [22]
    杜晓涛. 掺杂红砂岩的水泥湿陷性黄土力学性能与耐久性试验研究[D].兰州:兰州理工大学,2022.
    [23]
    中华人民共和国住房和城乡建设部 水泥土配合比设计规程:JGJ/T 233—2011[S]. 北京:中国计划出版社,2011.
    [24]
    中华人民共和国住房和城乡建设部.普通混凝土长期性能和耐久性能试验方法标准:GB/T 50082—2009 [S]. 北京:中国建筑工业出版社,2009.
    [25]
    祝艳波,韩宇涛,苗帅升,等.黄土-三趾马红土滑坡滑带土剪切力学特性影响因素[J].地球科学与环境学报,2021,43(4):744-759.
    [26]
    耿凯强, 李晓丽. 冻融循环下红色砒砂岩水泥土力学性能试验研究[J]. 排灌机械工程学报, 2021, 39 (6): 663-668.
    [27]
    LAKE C B, YOUSIF M A, JAMSHIDI R J. Examining freeze/thaw effects on performance and morphology of a lightly cemented soil[J]. Cold Regions Science and Technology, 2017, 134: 33-44.
    [28]
    马巍, 徐敩祖, 张立新. 冻融循环对石灰粉土剪切强度特性的影响[J]. 岩土工程学报,1999, 21(2): 23-25.
    [29]
    穆彦虎,马巍,李国玉, 等. 冻融作用对压实黄土结构影响的微观定量研究[J]. 岩土工程学报: 2011, 33(12): 1920-1925.
    [30]
    蔡四维, 蔡敏.混凝土的损伤断裂[M]. 北京: 人民交通出版社, 1999.
  • Relative Articles

    [1]ZHOU Zhijun, TIAN Yeqing, ZHANG Mingyi, WANG Kangchao, ZHU Shanshan. Analysis on Bearing Characteristics of Pile Groups with Post-Grouting at Pile Ends in Loess Areas[J]. INDUSTRIAL CONSTRUCTION, 2024, 54(3): 182-190. doi: 10.3724/j.gyjzG22090209
    [2]ZHOU Peng, MA Hailong. NUMERICAL ANALYSIS ON LOAD TRANSFER OF TENSILE PILES AND BOTTOM-UPLIFTED PILES[J]. INDUSTRIAL CONSTRUCTION, 2021, 51(3): 147-152. doi: 10.13204/j.gyjzG20040901
    [3]MA Hailong, BAO Yanran, MA Yufei, YAO Wenhong. LOAD-TRANSFER LAWS OF A SINGLE PILE AND DETERMINATION OF REASONABLE POSITIONS FOR GROUTING ON PILE SIDES[J]. INDUSTRIAL CONSTRUCTION, 2021, 51(9): 173-176,196. doi: 10.13204/j.gyjzG20091705
    [4]Chen Lanyun, Shu Zhong, Yi Nangai. NUMERICAL SIMULATION OF VERTICAL BEARING CAPACITY OF POST-GROUTING BORED PILES[J]. INDUSTRIAL CONSTRUCTION, 2011, 41(7): 78-81. doi: 10.13204/j.gyjz201107018
    [5]Qiang Xiaojun, Wan Changhong, Jiang Huihuang. ANALYSIS AND COMPARISON OF MODEL TEST REINFORCED EMBANKMENT BY PILE NET WITH PILE CAP[J]. INDUSTRIAL CONSTRUCTION, 2009, 39(5): 75-80. doi: 10.13204/j.gyjz200905016
    [6]Shen Baohan, Wang Haiyan, Liu Zhenliang, He Dexin. TEST STUDY OF DX PILE WITH FOUR BULBS AT XI'AN SXD PROJECT[J]. INDUSTRIAL CONSTRUCTION, 2009, 39(2): 1-7. doi: 10.13204/j.gyjz200902001
    [7]Shen Baohan. DX PILE AND ITS SEVERAL PROBLEMS OF VERTICAL BEARING CAPACITIES[J]. INDUSTRIAL CONSTRUCTION, 2009, 39(8): 84-95. doi: 10.13204/j.gyjz200908022
    [8]Dong Jinrong. INFLUENCE OF PILE BOTTOM SLIME ON SKIN FRICTION AND BEARING CAPACITY ESTIMATION TO PILE[J]. INDUSTRIAL CONSTRUCTION, 2009, 39(4): 93-97. doi: 10.13204/j.gyjz200904021
    [9]Yi Yaolin, Liu Songyu. NUMERICAL ANALYSIS OF BEHAVIOR OF T-SHAPED CEMENT-SOIL DEEP MIXING PILE COMPOSITE FOUNDATION UNDER EMBANKMENT LOADS[J]. INDUSTRIAL CONSTRUCTION, 2008, 38(11): 63-68. doi: 10.13204/j.gyjz200811016
    [10]Shen Baohan, Sun Junping, Wang Yan. THE CALCULATION OF VERTICAL COMPRESSIONAL BEARING CAPACITY OF DX PILE[J]. INDUSTRIAL CONSTRUCTION, 2008, 38(5): 18-22. doi: 10.13204/j.gyjz200805004
    [11]Shen Baohan. THE CHARACTERISTICS OF LOAD TRANSFER OF DX PILES[J]. INDUSTRIAL CONSTRUCTION, 2008, 38(5): 5-12. doi: 10.13204/j.gyjz200805002
    [12]Luo Chunbo, Zhu Xiangrong, Kong Qinghua, Sun Jinyue. PILE-SOIL INTERACTION ANALYSIS OF O-CELL TESTING PILE BASED ON ELASTIC THEORY[J]. INDUSTRIAL CONSTRUCTION, 2007, 37(8): 60-63. doi: 10.13204/j.gyjz200708016
    [13]Zhang Shimin, Yu Feng. LOAD TRANSFER AND BEARING CAPACITY OF PILES JACKED INTO SANDY DEPOSITS[J]. INDUSTRIAL CONSTRUCTION, 2007, 37(5): 61-64. doi: 10.13204/j.gyjz200705016
    [14]Peng Fuming, Yue Qingrui, Hao Jiping, Yang Yongxin. LOAD TRANSFER ANALYSIS OF STEEL STRUCTURES REPAIRED WITH FRP[J]. INDUSTRIAL CONSTRUCTION, 2005, 35(8): 26-30,109. doi: 10.13204/j.gyjz200508006
    [15]Pei Jie, Shui Weihou, Cao Hui. NEW MODEL OF LONG PILE LOAD TRANSFER FOR SOFT FOUNDATION IN SHANGHAI[J]. INDUSTRIAL CONSTRUCTION, 2005, 35(7): 50-54,49. doi: 10.13204/j.gyjz200507015
    [16]Li Haiwang, Ju Yuwen, Zhao Mingwei, Liang Renwang. ANALYSIS AND FIELD STATIC LOADING TESTS OF CAST-IN-PLACE PILES WITH BRANCHES AND PLATES[J]. INDUSTRIAL CONSTRUCTION, 2004, 34(3): 21-23. doi: 10.13204/j.gyjz200403006
    [17]Wu Xiongzhi, An Xinzheng, Wu Ruizhi. STUDY ON BEARING MECHANISM OF SOIL-CEMENT PILE[J]. INDUSTRIAL CONSTRUCTION, 2004, 34(6): 42-43,41. doi: 10.13204/j.gyjz200406014
    [18]Chun Lun, Wang Haiyan, Shen Baohan, He Dexin, Sun Junping. FULL-SCALE TEST STUDY ON UNIT SHAFT RESISTANCE AND UNIT END RESISTANCE OF DX PILES CAST-IN-SITU[J]. INDUSTRIAL CONSTRUCTION, 2004, 34(3): 15-18,39. doi: 10.13204/j.gyjz200403004
    [19]Chen Lun, Wang Haiyan, Shen Baohan, He Dexin, Sun Junping. FULL-SCALE TEST STUDY ON BEARING MECHANISM AND LOAD TRANSMISSION MODE OF DX PILES CAST-IN-SITU[J]. INDUSTRIAL CONSTRUCTION, 2004, 34(3): 5-8. doi: 10.13204/j.gyjz200403002
  • Created with Highcharts 5.0.7Amount of accessChart context menuAbstract Views, HTML Views, PDF Downloads StatisticsAbstract ViewsHTML ViewsPDF Downloads2024-042024-052024-062024-072024-082024-092024-102024-112024-122025-012025-022025-0302.557.51012.515
    Created with Highcharts 5.0.7Chart context menuAccess Class DistributionFULLTEXT: 18.9 %FULLTEXT: 18.9 %META: 81.1 %META: 81.1 %FULLTEXTMETA
    Created with Highcharts 5.0.7Chart context menuAccess Area Distribution其他: 8.5 %其他: 8.5 %China: 5.7 %China: 5.7 %北京: 4.7 %北京: 4.7 %十堰: 0.9 %十堰: 0.9 %南京: 0.9 %南京: 0.9 %嘉兴: 0.9 %嘉兴: 0.9 %常州: 0.9 %常州: 0.9 %张家口: 5.7 %张家口: 5.7 %扬州: 2.8 %扬州: 2.8 %杭州: 1.9 %杭州: 1.9 %温州: 0.9 %温州: 0.9 %漯河: 4.7 %漯河: 4.7 %芒廷维尤: 31.1 %芒廷维尤: 31.1 %芝加哥: 0.9 %芝加哥: 0.9 %西宁: 17.9 %西宁: 17.9 %西雅图: 0.9 %西雅图: 0.9 %连云港: 1.9 %连云港: 1.9 %邯郸: 0.9 %邯郸: 0.9 %郑州: 2.8 %郑州: 2.8 %阳泉: 4.7 %阳泉: 4.7 %其他China北京十堰南京嘉兴常州张家口扬州杭州温州漯河芒廷维尤芝加哥西宁西雅图连云港邯郸郑州阳泉

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (42) PDF downloads(1) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return