Source Journal of Chinese Scientific and Technical Papers
Included as T2 Level in the High-Quality Science and Technology Journals in the Field of Architectural Science
Core Journal of RCCSE
Included in the CAS Content Collection
Included in the JST China
Indexed in World Journal Clout Index (WJCI) Report
SU Zihan, GAO Huaguo, XU Shilin. Study on the Axial Tensile Properties of Reinforced Low-Grade Magnesium Ores Concrete-Filled Circular Steel Tubes[J]. INDUSTRIAL CONSTRUCTION, 2025, 55(2): 146-155. doi: 10.3724/j.gyjzG22101602
Citation: SU Zihan, GAO Huaguo, XU Shilin. Study on the Axial Tensile Properties of Reinforced Low-Grade Magnesium Ores Concrete-Filled Circular Steel Tubes[J]. INDUSTRIAL CONSTRUCTION, 2025, 55(2): 146-155. doi: 10.3724/j.gyjzG22101602

Study on the Axial Tensile Properties of Reinforced Low-Grade Magnesium Ores Concrete-Filled Circular Steel Tubes

doi: 10.3724/j.gyjzG22101602
  • Received Date: 2022-10-16
    Available Online: 2025-04-02
  • In order to study the axial tensile properties of reinforced low-grade magnesium ores concrete-filled circular steel tubes, explore the feasibility of low-grade magnesite concrete as the core concrete of steel tube axial tensile specimens and the influence of longitudinal reinforcement on the axial tensile properties of concrete-filled steel tube specimens, the axial tensile tests and corresponding push-out tests of 8 specimens were carried out with whether reinforcement and concrete type as changing parameters. The results showed that the average strain at each measuring point of the outer wall of the steel tube increased linearly with the increase of axial loads, the maximum strain ratio at the upper, middle and lower measuring points was about 8∶4∶1, and the ultimate interface bond strength of low-grade magnesium ores concrete-filled steel tubes was 0.67-0.73 MPa, which was stronger than that of ordinary concrete(the conclusion only applies to C40 concrete); the specimen was broken at L/3 and L/4 sections, and the section was a horizontal crack; the ultimate bearing capacity of concrete filled with low-grade magnesium ores was about 5% higher than that of ordinary concrete; the inner longitudinal reinforcement could effectively improve the ultimate bearing capacity of the specimen, and the inner longitudinal reinforcement had yielded when the specimen reached the ultimate bearing capacity; finally, based on the calculation formula of axial tensile capacity of concrete-filled circular steel tubes fitted by the research group in the early stage, a new calculation formula of axial tensile capacity of reinforced concrete-filled circular steel tubes related to the ratio of the wall thickness tothe diameter of the steel tube was proposed. The error between calculation results and test data was 2.2%, and the accuracy was high.
  • [1]
    应铮. 钢管活性粉末混凝土直接轴拉性能试验研究[D].福州:福建农林大学,2016.
    [2]
    HAN L H, HE S H, LIAO F Y. Performance and calculations of concrete filled steel tubes(CFST) under Axial Tension[J]. Journal of Constructional Steel Research, 2011, 67(11):1699-1709.
    [3]
    宋天诣,刘夏璐,项凯.火灾后椭圆钢管混凝土界面黏结性能研究[J].土木工程学报,2021,54(6):41-52.
    [4]
    LI W,HAN L H,CHAN T M.Numerical investigation on the performance of concrete-filled double skin steel tube members under tension[J].Thin-Walled Structures, 2014,79:108-118.
    [5]
    LI W,HAN L H,CHAN T M.Tensile behaviour of concrete-filled double skin steel tubular members[J]. Journal of Constructional Steel Research,2014,99: 35-46.
    [6]
    陈驹,王军,金伟良.配筋钢管混凝土柱轴拉及偏拉性能试验研究[J].建筑结构学报,2017,38(增刊1):272-277.
    [7]
    周孝军. 钢纤维微膨胀钢管混凝土拉弯力学行为研究[D].武汉:武汉理工大学,2013.
    [8]
    万城勇,查晓雄.配筋钢管混凝土轴压短柱受力性能试验研究[J].建筑结构学报,2013,34(增刊1):259-266.
    [9]
    古丽迪·努尔特列克. 配筋钢管掺沙漠砂混凝土轴压短柱力学性能试验研究[D].乌鲁木齐:新疆大学,2019.
    [10]
    王军,董建尧,赵建,等.内配钢筋钢管混凝土构件轴心受拉性能研究[J].钢结构,2018,33(7):33-39

    ,85.
    [11]
    温树青. 钢管贫镁矿高强混凝土短柱的偏压力学性能研究[D].鞍山:辽宁科技大学,2019.
    [12]
    中华人民共和国住房和城乡建设部.钢管混凝土结构技术规范:GB 50639—2014[S].北京:中国建筑工业出版社,2014.
    [13]
    中华人民共和国住房和城乡建设部.混凝土结构设计标准:GB/T 50010—2010[S].北京:中国建筑工业出版社,2024.
    [14]
    全国钢标准化技术委员会. 金属材料 拉伸试验 第1部分: 室温拉伸试验方法:GB/T 228.1—2021[S].北京:中国标准出版社,2021.
    [15]
    中华人民共和国住房和城乡建设部.普通混凝土配合比设计规程:JGJ 55—2011[S].北京:中国建筑工业出版社,2011.
    [16]
    薛立红,蔡绍怀.钢管混凝土柱组合界面的粘结强度(上)[J].建筑科学,1996,6(3):22-28.
    [17]
    薛立红,蔡绍怀.钢管混凝土柱组合界面的粘结强度(下)[J].建筑科学,1996,6(4):19-23.
    [18]
    ROEDER C W, CAMERON B, BROWN C B. Composite action in concrete filled tubes [J].Journal of Structual Engneering, 1999, 125 (5):477-484.
    [19]
    康希良.钢管混凝土柱组合力学性能及粘结滑移性能研究[D].西安:西安建筑科技大学,2008.
    [20]
    刘永健,池建军.钢管混凝土界面抗剪粘结强度的推出试验[J].工业建筑,2006,36(4):78-80.
    [21]
    刘永健,刘君平,池建军.钢管混凝土界面抗剪粘结滑移力学性能试验[J].广西大学学报(自然科学版),2010,35(1):17-23.
    [22]
    MORISHITA Y, TOMI M, YOSHIMURA K. Experimental studies on bond strength in concrete filed cirular steel tubular columns subjected to axial loads[J]. Ttansactions of Japan Concrete Institute, 1979(1): 351-358.
    [23]
    电力规划设计总院.钢-混凝土组合结构设计规程:DL/T 5085—1999[S].北京:中国电力出版社,1999.
    [24]
    American Institute of Steel Construction(AISC). Specification for structural steel buildings: ANSI/AISC 360-10[S].Chicago,Illinois:AISC,2010.
    [25]
    中国工程建设协会.特殊钢管混凝土构件设计规程:CECS 408∶2015[S].北京:中国计划出版社,2015.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (35) PDF downloads(3) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return