Source Journal of Chinese Scientific and Technical Papers
Included as T2 Level in the High-Quality Science and Technology Journals in the Field of Architectural Science
Core Journal of RCCSE
Included in the CAS Content Collection
Included in the JST China
Indexed in World Journal Clout Index (WJCI) Report
Zhang Tiejun, Yan Yuelan. STUDY ON LOCALIZATION OF MANUFACTURE OF UNDERRELAXATION PRESTRESSED STEEL SHANDS FOR CONTAINMENT OF Ling'ao NUCLEAR POWER PLANT (PHASE-Ⅱ) AND ITS USE[J]. INDUSTRIAL CONSTRUCTION, 2009, 39(4): 61-66. doi: 10.13204/j.gyjz200904015
Citation: WANG Yindong, LU Jianguo, WAN Xunsheng, TAN Lilin, DENG Fei, ZHOU Xiaoxun. Study on Characteristics of Hydro-Thermal Transfer and Freezing-Thawing of Soil-Rock Mixtures[J]. INDUSTRIAL CONSTRUCTION, 2024, 54(3): 174-181. doi: 10.3724/j.gyjzG22082708

Study on Characteristics of Hydro-Thermal Transfer and Freezing-Thawing of Soil-Rock Mixtures

doi: 10.3724/j.gyjzG22082708
  • Received Date: 2022-08-27
    Available Online: 2024-05-29
  • The rock content in freezing-thawing cycles is one of the key factors influencing the hydro-thermal transfer and freezing-thaw transferring characteristics of soil-rock mixtures. To study the effect of freezing-thawing cycles on hydro-thermal transfer, frost heave and thawing settlement of soil-rock mixtures, the soil-rock mixtures composed by Qinghai-Tibet silty clay and gravel with different stone content ratios (10%, 25%, 40%) were selected as research objects, and 10 unidirectional freezing-thawing cycles were conducted. The results indicated that the differences in the temperature and unfrozen water content of soil-rock mixtures during the freezing-thaw cycles had a strong correlation with the rock content. With an increase in the rock content, the completely frozen time for soil-rock mixtures has been extended, and the variable rate of the unfrozen wate content decreased. The difference of buried depth mainly influenced the temperature transfer of soil-rock mixture, and had an indirect effect on the variation of volumetric unfrozen water. For the samples with stone contents of 10% and 40%, the displacement change was manifested as shrinkage during freezing and expansion after thawing, and with an increase in the stone content, the shrinkage of specimens during freezing tended to decrease.
  • [1]
    廖秋林,李晓,董艳辉,等.川藏公路林芝-八宿段地质灾害特征及形成机制初探[J].地质力学学报, 2004, 10(1):33-39.
    [2]
    中华人民共和国建设部.岩土工程勘察规范:GB 50021-2001[S].北京:中国建筑工业出版社, 2009.
    [3]
    LI X, LIAO Q L, HE J M. In situ tests and a stochastic structural model of rock and soil aggregate in the Three Gorges reservoir area, China[J]. International Journal of Rock Mechanics and Mining Sciences, 2004, 41(3):494-500.
    [4]
    殷跃平.长江三峡库区移民迁建新址重大地质灾害及其防治研究[M].北京:地质出版社, 2004.
    [5]
    CHANG W J, THITIBHORN P. Effects of gravel content on shear resistance of rockly soils[J]. Engineering Geology, 2016, 207:78-90.
    [6]
    CHU F Y. Study on engineering characteristics of coarse-grained soil based on large-scale triaxial test[J]. Materials Science and Engineering Technology, 2014, 936:1395-1400.
    [7]
    ZHANG Z L, XU W J, XIA W, et al. Large-scale in-situ test for mechanical characterization of soil-rock mixture used in an embankment dam[J]. International Journal of Rock Mechanics and Mining Sciences, 2016, 86:317-322.
    [8]
    王宇,李晓,赫建明,等.土石混合体细观特性研究现状及展望[J].工程地质学报, 2014, 22(1):112-123.
    [9]
    XU W J, HU L M, GAO W. Random generation of the meso-structure of a soil-rock mixture and its application in the study of the mechanical behavior in a landslide dam[J]. International Journal of Rock Mechanics and Mining Sciences, 2016, 86:166-178.
    [10]
    舒志乐,刘新荣,刘保县,等.土石混合体粒度分形特性及其与含石量和强度的关系[J].中南大学学报(自然科学版), 2010, 41(3):1096-1101.
    [11]
    WANG T L, YUE Z R, MA C, et al. An experimental study on the frost heave properties of coarse grained soils[J]. Transportation Geotechnics, 2014, 1(3):137-144.
    [12]
    冯上鑫,柴军瑞,许增光,等.基于核磁共振技术研究渗流作用下土石混体细观结构的变化[J].岩土力学, 2018, 39(8):2886-2894.
    [13]
    ZHOU Z, YANG H, XING K, et al. Prediction models of the shear modulus of normal or frozen soil-rock mixtures[J]. Geomechanics and Engineering, 2018, 15(2):783-791.
    [14]
    BAGHERZADEH-KHALKHALI A, MIRGHASEMI A A. Numerical and experimental direct shear tests for coarse-grained soils[J]. Particuology, 2009, 7(1):83-91.
    [15]
    何鹏飞,马巍,穆彦虎,等.冻融循环对冻土-混凝土界面冻结强度影响的试验研究[J].岩土工程学报, 2020, 42(2):299-307.
    [16]
    贾学明,柴贺军,郑颖人.土石混合料大型直剪试验的颗粒离散元细观力学模拟研究[J].岩土力学, 2010, 31(9):2695-2703.
    [17]
    LI S H, ZHAO M H, WANG Y N, et al. A new numerical method for DEM-block and particle model[J]. International Journal of Rock Mechanics and Mining Sciences, 2004, 41:414-418.
    [18]
    金磊,曾亚武,李欢,等.基于不规则颗粒离散元的土石混合体大三轴数值模拟[J].岩土工程学报, 2015, 37(5):829-838.
    [19]
    XING K, ZHOU Z, YANG H, et al. Macro-meso freeze-thaw damage mechanism of soil-rock mixtures with different rock contents[J]. International Journal of Pavement Engineering, 2018, 21(1):9-19.
    [20]
    徐文杰,胡瑞林.虎跳峡龙蟠右岸土石混合体粒度分形特征研究[J].工程地质学报, 2006(4):496-501.
    [21]
    刘泉声,黄诗冰,康永水,等.裂隙岩体冻融损伤研究进展与思考[J].岩石力学与工程学报, 2015, 34(3):452-471.
    [22]
    刘泉声,黄诗冰,康永水,等.岩体冻融疲劳损伤模型与评价指标研究[J].岩石力学与工程学报, 2015, 34(6):1116-1127.
    [23]
    KONG Q Z, WANG R L, SONG G B, et al. Monitoring the soil freeze-thaw process using piezoceramic-based smart aggregate[J]. Journal of Cold Regions Engineering, 2014, 28(2):1-16.
    [24]
    HU T F, LIU J K ZHU B Z, et al. Study on sliding characteristics and controlling measures of colluvial landslides in Qinghai-Tibet Plateau[J]. Procedia Engineering, 2016, 143:1477-1484.
    [25]
    唐丽云,王鑫,邱培勇,等.冻土区土石混合体冻融交界面剪切性能研究[J].岩土力学, 2020, 41(10):3225-3235.
    [26]
    胡峰,李志清,孙凯,等.冻土石混合体、冰石混合物和冻土在压、拉作用下的破坏特征对比[J].岩石力学与工程学报, 2021, 40(1):2923-2934.
    [27]
    LU J G, WAN X S, YAN Z R, et al. Hydro-thermal characteristics and deformation behaviors of silty clay subjected to freeze-thaw cycles[J]. Arabian Journal of Geosciences, 2022, 15(5):446-455.
    [28]
    中华人民共和国交通运输部.公路土工试验规程:JTG 3430-2020[S].北京:人民交通出版社, 2020.
    [29]
    LU J G, ZHANG M Y, ZHANG X Y, et al. Experimental study on the freezing-thawing deformation of a silty clay[J]. Cold Regions Science and Technology, 2018, 151:19-27.
    [30]
    ZHANG Y G, LU Y, LIU S H, et al. Volumetric behavior of an unsaturated clayey soil-rock mixture subjected to freeze-thaw cycles:a new insight[J]. Cold Regions Science and Technology, 2022, 201:103608-103617.
    [31]
    DAGESSE D F. Freezing cycle effects on water stability of soil aggregates[J]. Canadian Journal of Soil Science, 2013, 93(4):473-483.
    [32]
    PERFECT E, LOON W K P V, KAY B D, et al. Influence of ice segregation and solutes on soil structural stability[J]. Canadian Journal of Soil Science, 1990, 70(4):571-581.
    [33]
    COUSSY O. Poromechanics of freezing materials[J]. Journal of the Mechanics and Physics of Solids, 2005, 53(8):1689-1718.
    [34]
    SUN K, ZHOU A N. A multisurface elastoplastic model for frozen soil[J]. Acta Geotechnica, 2021, 16(11):3401-3424.
    [35]
    WANG S F, YANG Z H, YANG P. Structural change and volumetric shrinkage of clay due to freeze-thaw by 3D X-ray computed tomography[J]. Cold Regions Science and Technology, 2017, 138:108-116.
    [36]
    邱国庆,刘经仁,刘鸿绪.冻土学辞典(汉、英、俄对照)[M].兰州:甘肃科学技术出版社, 1994.
  • Relative Articles

    [1]ZHOU Zhijun, TIAN Yeqing, ZHANG Mingyi, WANG Kangchao, ZHU Shanshan. Analysis on Bearing Characteristics of Pile Groups with Post-Grouting at Pile Ends in Loess Areas[J]. INDUSTRIAL CONSTRUCTION, 2024, 54(3): 182-190. doi: 10.3724/j.gyjzG22090209
    [2]ZHOU Peng, MA Hailong. NUMERICAL ANALYSIS ON LOAD TRANSFER OF TENSILE PILES AND BOTTOM-UPLIFTED PILES[J]. INDUSTRIAL CONSTRUCTION, 2021, 51(3): 147-152. doi: 10.13204/j.gyjzG20040901
    [3]MA Hailong, BAO Yanran, MA Yufei, YAO Wenhong. LOAD-TRANSFER LAWS OF A SINGLE PILE AND DETERMINATION OF REASONABLE POSITIONS FOR GROUTING ON PILE SIDES[J]. INDUSTRIAL CONSTRUCTION, 2021, 51(9): 173-176,196. doi: 10.13204/j.gyjzG20091705
    [4]Chen Lanyun, Shu Zhong, Yi Nangai. NUMERICAL SIMULATION OF VERTICAL BEARING CAPACITY OF POST-GROUTING BORED PILES[J]. INDUSTRIAL CONSTRUCTION, 2011, 41(7): 78-81. doi: 10.13204/j.gyjz201107018
    [5]Qiang Xiaojun, Wan Changhong, Jiang Huihuang. ANALYSIS AND COMPARISON OF MODEL TEST REINFORCED EMBANKMENT BY PILE NET WITH PILE CAP[J]. INDUSTRIAL CONSTRUCTION, 2009, 39(5): 75-80. doi: 10.13204/j.gyjz200905016
    [6]Shen Baohan, Wang Haiyan, Liu Zhenliang, He Dexin. TEST STUDY OF DX PILE WITH FOUR BULBS AT XI'AN SXD PROJECT[J]. INDUSTRIAL CONSTRUCTION, 2009, 39(2): 1-7. doi: 10.13204/j.gyjz200902001
    [7]Shen Baohan. DX PILE AND ITS SEVERAL PROBLEMS OF VERTICAL BEARING CAPACITIES[J]. INDUSTRIAL CONSTRUCTION, 2009, 39(8): 84-95. doi: 10.13204/j.gyjz200908022
    [8]Dong Jinrong. INFLUENCE OF PILE BOTTOM SLIME ON SKIN FRICTION AND BEARING CAPACITY ESTIMATION TO PILE[J]. INDUSTRIAL CONSTRUCTION, 2009, 39(4): 93-97. doi: 10.13204/j.gyjz200904021
    [9]Yi Yaolin, Liu Songyu. NUMERICAL ANALYSIS OF BEHAVIOR OF T-SHAPED CEMENT-SOIL DEEP MIXING PILE COMPOSITE FOUNDATION UNDER EMBANKMENT LOADS[J]. INDUSTRIAL CONSTRUCTION, 2008, 38(11): 63-68. doi: 10.13204/j.gyjz200811016
    [10]Shen Baohan, Sun Junping, Wang Yan. THE CALCULATION OF VERTICAL COMPRESSIONAL BEARING CAPACITY OF DX PILE[J]. INDUSTRIAL CONSTRUCTION, 2008, 38(5): 18-22. doi: 10.13204/j.gyjz200805004
    [11]Shen Baohan. THE CHARACTERISTICS OF LOAD TRANSFER OF DX PILES[J]. INDUSTRIAL CONSTRUCTION, 2008, 38(5): 5-12. doi: 10.13204/j.gyjz200805002
    [12]Luo Chunbo, Zhu Xiangrong, Kong Qinghua, Sun Jinyue. PILE-SOIL INTERACTION ANALYSIS OF O-CELL TESTING PILE BASED ON ELASTIC THEORY[J]. INDUSTRIAL CONSTRUCTION, 2007, 37(8): 60-63. doi: 10.13204/j.gyjz200708016
    [13]Zhang Shimin, Yu Feng. LOAD TRANSFER AND BEARING CAPACITY OF PILES JACKED INTO SANDY DEPOSITS[J]. INDUSTRIAL CONSTRUCTION, 2007, 37(5): 61-64. doi: 10.13204/j.gyjz200705016
    [14]Peng Fuming, Yue Qingrui, Hao Jiping, Yang Yongxin. LOAD TRANSFER ANALYSIS OF STEEL STRUCTURES REPAIRED WITH FRP[J]. INDUSTRIAL CONSTRUCTION, 2005, 35(8): 26-30,109. doi: 10.13204/j.gyjz200508006
    [15]Pei Jie, Shui Weihou, Cao Hui. NEW MODEL OF LONG PILE LOAD TRANSFER FOR SOFT FOUNDATION IN SHANGHAI[J]. INDUSTRIAL CONSTRUCTION, 2005, 35(7): 50-54,49. doi: 10.13204/j.gyjz200507015
    [16]Li Haiwang, Ju Yuwen, Zhao Mingwei, Liang Renwang. ANALYSIS AND FIELD STATIC LOADING TESTS OF CAST-IN-PLACE PILES WITH BRANCHES AND PLATES[J]. INDUSTRIAL CONSTRUCTION, 2004, 34(3): 21-23. doi: 10.13204/j.gyjz200403006
    [17]Wu Xiongzhi, An Xinzheng, Wu Ruizhi. STUDY ON BEARING MECHANISM OF SOIL-CEMENT PILE[J]. INDUSTRIAL CONSTRUCTION, 2004, 34(6): 42-43,41. doi: 10.13204/j.gyjz200406014
    [18]Chun Lun, Wang Haiyan, Shen Baohan, He Dexin, Sun Junping. FULL-SCALE TEST STUDY ON UNIT SHAFT RESISTANCE AND UNIT END RESISTANCE OF DX PILES CAST-IN-SITU[J]. INDUSTRIAL CONSTRUCTION, 2004, 34(3): 15-18,39. doi: 10.13204/j.gyjz200403004
    [19]Chen Lun, Wang Haiyan, Shen Baohan, He Dexin, Sun Junping. FULL-SCALE TEST STUDY ON BEARING MECHANISM AND LOAD TRANSMISSION MODE OF DX PILES CAST-IN-SITU[J]. INDUSTRIAL CONSTRUCTION, 2004, 34(3): 5-8. doi: 10.13204/j.gyjz200403002
  • Created with Highcharts 5.0.7Amount of accessChart context menuAbstract Views, HTML Views, PDF Downloads StatisticsAbstract ViewsHTML ViewsPDF Downloads2024-042024-052024-062024-072024-082024-092024-102024-112024-122025-012025-022025-0302.557.51012.515
    Created with Highcharts 5.0.7Chart context menuAccess Class DistributionFULLTEXT: 18.9 %FULLTEXT: 18.9 %META: 81.1 %META: 81.1 %FULLTEXTMETA
    Created with Highcharts 5.0.7Chart context menuAccess Area Distribution其他: 8.5 %其他: 8.5 %China: 5.7 %China: 5.7 %北京: 4.7 %北京: 4.7 %十堰: 0.9 %十堰: 0.9 %南京: 0.9 %南京: 0.9 %嘉兴: 0.9 %嘉兴: 0.9 %常州: 0.9 %常州: 0.9 %张家口: 5.7 %张家口: 5.7 %扬州: 2.8 %扬州: 2.8 %杭州: 1.9 %杭州: 1.9 %温州: 0.9 %温州: 0.9 %漯河: 4.7 %漯河: 4.7 %芒廷维尤: 31.1 %芒廷维尤: 31.1 %芝加哥: 0.9 %芝加哥: 0.9 %西宁: 17.9 %西宁: 17.9 %西雅图: 0.9 %西雅图: 0.9 %连云港: 1.9 %连云港: 1.9 %邯郸: 0.9 %邯郸: 0.9 %郑州: 2.8 %郑州: 2.8 %阳泉: 4.7 %阳泉: 4.7 %其他China北京十堰南京嘉兴常州张家口扬州杭州温州漯河芒廷维尤芝加哥西宁西雅图连云港邯郸郑州阳泉

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (49) PDF downloads(2) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return