Source Journal of Chinese Scientific and Technical Papers
Included as T2 Level in the High-Quality Science and Technology Journals in the Field of Architectural Science
Core Journal of RCCSE
Included in the CAS Content Collection
Included in the JST China
Indexed in World Journal Clout Index (WJCI) Report
ZHU Yangui. Discrete Element Method Analysis on Shear Responses of Mixed Soil During Anisotropic Consolidation[J]. INDUSTRIAL CONSTRUCTION, 2024, 54(3): 167-173. doi: 10.3724/j.gyjzG22062701
Citation: ZHU Yangui. Discrete Element Method Analysis on Shear Responses of Mixed Soil During Anisotropic Consolidation[J]. INDUSTRIAL CONSTRUCTION, 2024, 54(3): 167-173. doi: 10.3724/j.gyjzG22062701

Discrete Element Method Analysis on Shear Responses of Mixed Soil During Anisotropic Consolidation

doi: 10.3724/j.gyjzG22062701
  • Received Date: 2022-06-27
    Available Online: 2024-05-29
  • To explore the microscopic mechanisms of the macroscopic shear responses of dense-mixed soil with different contents of fine particles affected by initial stress ratios, the discrete element method was used to study the macroscopic and microscopic shear responses of mixed soil. Mixed soil consisted of spherical fine particles and coarse particles with real gravel shapes. Research indicated that an increase in initial stress ratios could increase both friction and dilatancy angles at initial loading stages. It was found that initial stress ratios had little influence on engineering classifications of mixed soil by analyzing the contact contributions of coarse-coarse, coarse-fine, and fine-fine particles. With increase in initial stress ratios, the shear strength of mixed soil increased at initial loading stages, which was closely related to an increase in contact forces particles. With increase in initial stress ratios, the increase in internal fiction angles at initial loading stages could be attributed to the anisotropic increase degree of contact, normal contact force, normal and tangential branch vectors beyond the anisotropic decrease degree of tangential contact force.
  • [1]
    汪清净.不等向固结条件下砂土动力特性及强度归一化表征[D].杭州:浙江大学, 2012.
    [2]
    吴越,杨仲轩,徐长节.初始组构各向异性对砂土力学特性及临界状态的影响[J].岩土力学, 2016, 37(9):2569-2576.
    [3]
    姜景山,左永振,程展林,等.围压和密度对粗粒料临界状态力学特性的影响[J].长江科学院院报, 2021, 38(5):94-102.
    [4]
    SHI J, QIAN S, ZENG L L, et al. Influence of anisotropic consolidation stress paths on compression behaviour of reconstituted Wenzhou clay[J]. Geotechnique Letters, 2015, 5(4):275-280.
    [5]
    CAI Y Q, HAO B B, GU C, et al. Effect of anisotropic consolidation stress paths on the undrained shear behavior of reconstituted Wenzhou clay[J]. Engineering Geology, 2018, 242:23-33.
    [6]
    BERGADO D T, TAECHAKUMTHORN C, LORENZO G A, et al. Stress-deformation behavior under anisotropic drained triaxial consolidation of cement-treated soft Bangkok clay[J]. Soils and Foundations, 2006, 46(5):629-637.
    [7]
    DOROSTKAR O, MIRGHASEMI A A. Micro-mechanical study of stress path and initial conditions in granular materials using DEM[J]. Computational Particle Mechanics, 2016, 3(1):15-27.
    [8]
    ZHOU W, WU W, MA G, et al. Study of the effects of anisotropic consolidation on granular materials under complex stress paths using the DEM[J/OL]. Granular Matter, 2017, 76(19)[2022-06-27]. https://doi.org/10.1007/s10035-017-0763-0.
    [9]
    张波,陶连金,黄俊,等.基于微观图像处理技术的土体三轴试验颗粒流模型[J].工业建筑, 2013, 43(4):86-91.
    [10]
    吴东旭,姚勇,梅军,等.砂卵石土直剪试验颗粒离散元细观力学模拟[J].工业建筑, 2014, 44(5):79-84.
    [11]
    高文伟,高玮,胡瑞林,等.块石空间定向性对土石混合体力学性质的影响[J].防灾减灾工程学报, 2019, 39(1):89-97.
    [12]
    张敏超,刘新荣,王鹏,等.不同含石量下泥岩土石混合体剪切特性及细观破坏机制[J].土木与环境工程学报(中英文), 2019, 41(6):17-41.
    [13]
    张强,汪小刚,赵宇飞,等.土石混合体三维细观结构随机重构及其力学特性颗粒流数值模拟研究[J].岩土工程学报, 2019, 41(1):60-69.
    [14]
    GONG J, LIU J, CUI L. Shear behaviors of granular mixtures of gravel-shaped coarse and spherical fine particles investigated via discrete element method[J]. Powder Technology, 2019, 353:178-194.
    [15]
    杨升,李晓庆.基于3维离散元颗粒流的土石混合体大型直剪试验模拟分析[J].工程科学与技术, 2020, 52(3):78-85.
    [16]
    胡军霞,马一跃,张仕贤,等.不排水条件下土石混合料双轴压缩离散元模拟[J].计算力学学报, 2021, 39(5):661-669.
    [17]
    ROWE P W. Stress-dilatancy relation for static equilibrium of an assembly of particles in contact[C]//Proceedings of the Royal Society A:Mathematical, Physical and Engineering Sciences. 1962.
    [18]
    GUO N, ZHAO J D. The signature of shear-induced anisotropy in granular media[J]. Computers and Geotechnics, 2013, 47:1-15.
    [19]
    GOLDENBERG C, GOLDHIRSCH I. Friction enhances elasticity in granular solids[J]. Nature, 2005, 435(7039):188-191.
    [20]
    JIANG M J, SHEN Z, WANG J F. A novel three-dimensional contact model for granulates incorporating rolling and twisting resistances[J]. Computers and Geotechnics, 2015, 65:147-163.
    [21]
    CAO X P, ZHU Y G, GONG J. Effect of the intermediate principal stress on the mechanical responses of binary granular mixtures with different fines contents[J/OL]. Granular Matter, 2021, 23(2)[2022-06-27]. https://doi.org/10.1007/s10035-021-01110-9.
    [22]
    ZHU Y G, NIE Z H, GONG J, et al. An analysis of the effects of the size ratio and fines content on the shear behaviors of binary mixtures using DEM[J/OL]. Computers and Geotechnics, 2020, 118[2022-06-27]. https://doi.org/10.1016/j.compgeo.2019.103353.
    [23]
    LOPEZ R D, SILFWERBRAND J, JELAGIN D, et al. Force transmission and soil fabric of binary granular mixtures[J]. Geotechnique, 2016, 66(7):578-583.
    [24]
    LINDQUIST E S. The strength and deformation properties of melange[D]. Berkeley:University of California at Berkeley, 1994.
    [25]
    李维树,丁秀丽,邬爱清,等.蓄水对三峡库区土石混合体直剪强度参数的弱化程度研究[J].岩土力学, 2007, 28(7):1338-1342.
    [26]
    XU W J, XU Q, HU R L. Study on the shear strength of soil-rock mixture by large scale direct shear test[J]. International Journal of Rock Mechanics and Mining Sciences, 2011, 48(8):1235-1247.
    [27]
    MINH N H, CHENG Y P, THORNTON C. Strong force networks in granular mixtures[J]. Granular Matter, 2014, 16(1):69-78.
  • Relative Articles

    [1]PAN Zuanfeng, LI Haobo, PAN Haojin. Numerical Simulations of Nonlinear Creep of Concrete at Mesoscale[J]. INDUSTRIAL CONSTRUCTION, 2024, 54(10): 84-93. doi: 10.3724/j.gyjzG24093001
    [2]LI Hao, WANG Dayang, ZHAO Dongzhuo, XIE Zhen. Shaking Table Tests and Numerical Simulation Study on the Centroid Eccentricity of the Center of Mass of Full-Frame-Supported High-Rise Building Structure with Thick Plate Transfer[J]. INDUSTRIAL CONSTRUCTION, 2024, 54(5): 141-149. doi: 10.3724/j.gyjzG23032007
    [3]LI Junyu, FANG Zhi, TANG Shoufeng, LIAO Yuan, WANG Zhiwei. Experimental Research on Stress Relaxation Properties of CFRP Rods[J]. INDUSTRIAL CONSTRUCTION, 2024, 54(6): 13-21. doi: 10.3724/j.gyjzG24032004
    [4]WU Qinghua. Analysis on Construction Responses of Rock Around Parallel Subway Tunnels in Inclined Stratification Rocks[J]. INDUSTRIAL CONSTRUCTION, 2023, 53(11): 29-35,87. doi: 10.13204/j.gyjzG22071706
    [5]XUE Gang, SUN Lisuo, ZHAO Yujie, DONG Wei. Research on Mechanical Properties of Steel Slag Concrete Based on Macro-meso Scale[J]. INDUSTRIAL CONSTRUCTION, 2022, 52(1): 180-186,179. doi: 10.13204/j.gyjzG21020903
    [6]BAI Xiangyu, LI Shunqun, ZHANG Wei. STUDY ON LEACHED CHARACTERISTICS AND STABILITY OF HEAVY METAL IN CEMENTED MIXED SLUDGE[J]. INDUSTRIAL CONSTRUCTION, 2021, 51(11): 149-153,185. doi: 10.13204/j.gyjzG21060210
    [7]XIAO Qisheng, XIONG Xueyu. MESO-SCALE SIMULATIONS OF PULL-OUT TESTS FOR RETARDED BONDED TENDONS[J]. INDUSTRIAL CONSTRUCTION, 2021, 51(10): 28-32,39. doi: 10.13204/j.gyjzg21061507
    [8]ZHAN Tao. RESEARCH ON FORECASTS FOR ULTIMATE DISPLACEMENT OF TUNNELS BASED ON THE DE-GP ALGORITHM IN CONSTRUCTION PROCESS[J]. INDUSTRIAL CONSTRUCTION, 2021, 51(10): 184-188,133. doi: 10.13204/j.gyjzG20081201
    [9]CAI Qingchi, XIE Hankang. A NUMERICAL METHOD FOR DETERMINING PRE-CONSOLIDATION PRESSURE[J]. INDUSTRIAL CONSTRUCTION, 2021, 51(5): 164-167,187. doi: 10.13204/j.gyjzG20061201
    [14]Yang Ping. STABILITY ANALYSIS AND REINFORCEMENT TECHNOLOGY RESEARCH OF CHICKEN CLAW TRENCH HIGH ROCKFILL EMBANKMENT IN MOUNTAINOUS AREAS[J]. INDUSTRIAL CONSTRUCTION, 2015, 45(5): 166-173. doi: 10.13204/j.gyjz201505035
    [15]Wu Dongxu, Yao Yong, Mei Jun, Liu Xiaoling. MICROMECHANICS SIMULATION OF DIRECT SHEAR TEST OF SANDY PEBBLE SOIL WITH DISCRETE ELEMENT METHOD[J]. INDUSTRIAL CONSTRUCTION, 2014, 44(05): 90-93.
    [16]Chen Yadong, Wang Xudong, Cai Jiangdong. STUDY ON THE MECHANISM CHARACTERISTICS OF PILE-SOIL INTERFACE BASE ON DIGITAL IMAGE METHOD[J]. INDUSTRIAL CONSTRUCTION, 2012, 42(3): 84-87,137. doi: 10.13204/j.gyjz201203018
    [17]Wu Zhanrui, Qi Taiyue, Tang Jincai. OPTIMIZATION ANALYSIS OF CONSTRUCTION METHOD FOR SHALLOW-BURIED TUNNEL WITH LARGE SECTION[J]. INDUSTRIAL CONSTRUCTION, 2012, 42(8): 102-107. doi: 10.13204/j.gyjz201208022
    [18]Lei Jinbo. SIMPLIFICATION CALCULATION OF COMPOSITE PILE-SOIL STRESS RATIO OF COMPOSITE FOUNDATION OF RIGID PILE WITH CAP[J]. INDUSTRIAL CONSTRUCTION, 2010, 40(5): 74-78,81. doi: 10.13204/j.gyjz201005015
    [19]Luo Jia, Yao Yang-ping. DILATANCY BEHAVIOR OF SOIL-STRUCTURE INTERFACES AND ITS SIMULATION[J]. INDUSTRIAL CONSTRUCTION, 2006, 36(8): 36-38,49. doi: 10.13204/j.gyjz200608012
    [20]Zhao Dazhou, Wang Qingxiang, Guan Ping. RESEARCH ON LOAD-BEARING CAPACITY OF STEEL TUBULAR COLUMNS FILLED WITH STEEL-REINFORCED HIGH-STRENGTHCONCRETE SUBJECTED TO COMPRESSION AND BENDING[J]. INDUSTRIAL CONSTRUCTION, 2005, 35(9): 84-85,93. doi: 10.13204/j.gyjz200509023
  • Created with Highcharts 5.0.7Amount of accessChart context menuAbstract Views, HTML Views, PDF Downloads StatisticsAbstract ViewsHTML ViewsPDF Downloads2024-052024-062024-072024-082024-092024-102024-112024-122025-012025-022025-032025-040246810
    Created with Highcharts 5.0.7Chart context menuAccess Class DistributionFULLTEXT: 15.4 %FULLTEXT: 15.4 %META: 84.6 %META: 84.6 %FULLTEXTMETA
    Created with Highcharts 5.0.7Chart context menuAccess Area Distribution其他: 24.6 %其他: 24.6 %佳木斯: 1.5 %佳木斯: 1.5 %北京: 1.5 %北京: 1.5 %十堰: 1.5 %十堰: 1.5 %天津: 4.6 %天津: 4.6 %张家口: 7.7 %张家口: 7.7 %杭州: 3.1 %杭州: 3.1 %漯河: 1.5 %漯河: 1.5 %石家庄: 1.5 %石家庄: 1.5 %芒廷维尤: 27.7 %芒廷维尤: 27.7 %芝加哥: 4.6 %芝加哥: 4.6 %衢州: 3.1 %衢州: 3.1 %西安: 6.2 %西安: 6.2 %运城: 7.7 %运城: 7.7 %邯郸: 1.5 %邯郸: 1.5 %长沙: 1.5 %长沙: 1.5 %其他佳木斯北京十堰天津张家口杭州漯河石家庄芒廷维尤芝加哥衢州西安运城邯郸长沙

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (54) PDF downloads(0) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return