Source Journal of Chinese Scientific and Technical Papers
Included as T2 Level in the High-Quality Science and Technology Journals in the Field of Architectural Science
Core Journal of RCCSE
Included in the CAS Content Collection
Included in the JST China
Indexed in World Journal Clout Index (WJCI) Report
LYU Donglin, SUN Hailin, ZHU Lei. Shaking Table Tests and Finite Element Analysis of an Offshore Wind Turbine Model with Blades[J]. INDUSTRIAL CONSTRUCTION, 2025, 55(3): 100-108. doi: 10.3724/j.gyjz.G23030301
Citation: LYU Donglin, SUN Hailin, ZHU Lei. Shaking Table Tests and Finite Element Analysis of an Offshore Wind Turbine Model with Blades[J]. INDUSTRIAL CONSTRUCTION, 2025, 55(3): 100-108. doi: 10.3724/j.gyjz.G23030301

Shaking Table Tests and Finite Element Analysis of an Offshore Wind Turbine Model with Blades

doi: 10.3724/j.gyjz.G23030301
  • Received Date: 2023-03-03
    Available Online: 2025-06-07
  • Publish Date: 2025-03-20
  • Offshore wind turbines are composed of wind turbines and support structures, which play an important role in maintaining the stability and safety of wind turbines. To further explore ocean wind energy, new types of tower barrels and substructures which more suitable for ocean environment need to be researched and developed. Tripod structures have been widely used in the water areas where the water depth is between 30 and 40 meters. However, compared with intensive studies on monopile, the research on tripod structures still needs to be conducted. Shaking table tests were conducted on a 1/20 scaled model of an offshore tripod-supported wind turbine tower with blades, as as to investigate the dynamic characteristics of the tripod structure with blades and its dynamic responses under three natural seismic ground motions with a peak ground acceleration of 0.6g, comparing the results of the tripod structure with and without blades, it was found that the natural frequency and seismic response of the model with blades were lower than that without blades. Lateral supports were set around piles to investigate the influence of soil constraint on the structure, and test results showed that compared with the model with braces, the first two-order natural frequencies of the model without braces decreased approximately 7.71% and 10.53%, respectively, and the amplitude ofseismic responses decreased by 6.83%-67.94%.The FEM software ANSYS was used to carry out a time history analysis of the model, and the results of finite element analysis agreed well with the results of experimental investigations.
  • [1]
    International Electro-Technical Commission. Wind turbines part 3:Design requirements for offshore wind turbines I.S. EN 61400-3-2009[S].Ireland,2009.
    [2]
    黄维平,刘建军,赵战华. 海上风电基础结构研究现状及发展趋势[J]. 海洋工程,2009,27(2):130- 134
    [3]
    van der TEMPEL J,de VRIES W,KROLIS V,et al. Mangrove findings offshore wind energy in deep waters[C]// Proceedings European Offshore Wind[C]. Berlin:2007.
    [4]
    徐龙军,何晓云,谢礼立. 海上风电工程基础结构抗震性能研究[J]. 地震工程与工程振动,2012,32(3):1- 7.
    [5]
    YANG Y,BASHIR M,LI C,et al. Analysis of seismic behaviour of an offshore wind turbine with a flexible foundation[J]. Ocean Engineering,2019,178(4):215- 228.
    [6]
    宋波,李吉人,王海龙,等. 考虑潮位及动水压力影响的在役海上风电塔地震响应分析[J]. 建筑科学与工程学报,2015,32(2):35- 41.
    [7]
    卢光坤,陈旭光,杜文博,等. 考虑桩-土作用及冲刷影响的海上风电结构损伤检测研究[J]. 振动与冲击,2023,42(1):105- 114.
    [8]
    宋波,赵伟娜,双妙. 冲刷深度对海上风电塔地震动力响应的影响分析[J]. 工程科学学报,2019,41(10):1351- 1359.
    [9]
    刘红军,王超. 海上风电单桩基础周围土体地震液化分析[J]. 中国海洋大学学报(自然科学版),2017,47(4):93- 99.
    [10]
    张小玲,刘建秀,杜修力,等. 风浪流共同作用下海上风电基础与海床的动力响应分析[J]. 防灾减灾工程学报,2018,38(4):658- 668.
    [11]
    王国军,张大勇,王帅飞,等. 寒区海上风电基础锥体动冰荷载[J]. 科学技术与工程,2020,20(31):12820- 12826.
    [12]
    吴小锋,朱斌,汪玉冰. 水平环境荷载与地震动联合作用下的海上风机单桩基础动力响应模型试验[J]. 岩土力学,2019,40(10):3937- 3944.
    [13]
    ALATI N,FAILLA G,ARENA F. Seismic analysis of offshore wind turbines on bottom-fixed support structures[J]. Philosophical Transactions,2015,373(2035),20140086.
    [14]
    李炜,张敏,刘振亚,等. 三脚架式海上风电基础结构基频敏感性研究[J]. 太阳能学报,2015,36(1):6.
    [15]
    MA H,YANG J,CHEN L. Numerical analysis of the long-term performance of offshore wind turbines supported by monopiles[J]. Ocean Engineering,2017,136(5):94- 105.
    [16]
    张力伟,李昕. 三脚架式海上风电支撑结构流固耦合动力分析[J]. 可再生能源,2017,35(5):7.
    [17]
    ASIM T,ISLAM S Z,HEMMATI A,et al. A review of recent advancements in offshore wind turbine technology[J]. Energies,2022,15(2):579- 609.
    [18]
    申民宇,祝磊,贾军波,等. 海上风力塔架结构模型振动台试验研究[J]. 工程力学,2022,39(2):85- 95.
    [19]
    周颖,吕西林,卢文胜. 不同结构的振动台试验模型等效设计方法[J]. 结构工程师,2006(4):37- 40.
    [20]
    JONKMAN J M,BUTTERFIELD S,MUSIAL W,et al. Definition of a 5MW reference wind turbine for offshore system development[R]. Colorado:Office of Scientific& Technical Information Technical Reports,2009.
    [21]
    张力伟,李昕. 三脚架式海上风电支撑结构流固耦合动力分析[J]. 可再生能源,2017,35(5):740- 746.
    [22]
    孟家瑶,戴靠山,毛振西,等. 某1.5MW风电塔振动台缩尺模型设计[J]. 世界地震工程,2018,34(4

    ):191- 198.
    [23]
    JONKMAN J,BUTTERFIELD S,PASSON P,et al. Offshore code comparison collaboration within IEA wind annex XXIII:phase II results regarding monopile foundation modeling[C]// Presented at the IEA European Offshore Wind Conference. Berlin:Germany,National Renewable Energy Laboratory,2007.
    [24]
    中华人民共和国住房和城乡建设部. 钢结构设计标准:GB 50017—2017[S]. 北京:中国建筑工业出版社,2018.
    [25]
    张晋. 采用MATLAB进行振动台试验数据的处理[J]. 工业建筑,2002,32(2):28- 30,65.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (19) PDF downloads(1) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return