Source Journal of Chinese Scientific and Technical Papers
Included as T2 Level in the High-Quality Science and Technology Journals in the Field of Architectural Science
Core Journal of RCCSE
Included in the CAS Content Collection
Included in the JST China
Indexed in World Journal Clout Index (WJCI) Report
OU Jiajia, YANG Xuebing, WANG Xijun, LI Zheng. LATERAL PERFORMANCE OF CROSS-LAMINATED TIMBER WALLS WITH TWO DIFFERENT CONSTRUCTION TYPES[J]. INDUSTRIAL CONSTRUCTION, 2020, 50(3): 84-87,113. doi: 10.13204/j.gyjz202003014
Citation: XIAO Jie, TAN Yuefeng, TONG Chao, YANG Heping, CHANG Jin, ZOU Weilie, CHEN Guanyi. Numerical Analysis for Shallow Landslides of Expansive Soil Slopes Based on Three Fields Coupling[J]. INDUSTRIAL CONSTRUCTION, 2022, 52(7): 128-136,118. doi: 10.13204/j.gyjzg21070206

Numerical Analysis for Shallow Landslides of Expansive Soil Slopes Based on Three Fields Coupling

doi: 10.13204/j.gyjzg21070206
  • Received Date: 2021-07-02
    Available Online: 2022-10-28
  • To revealing the reasons for shallow landslides of expansive soil slopes, in reference to the existing calculation ways of multifield-coupling numerical analysis, the seepage processes from unsaturation to saturation in expansive soil slopes and hygroscopic expansion processes were simulated by the two-phase flow module and thermal module of the finite difference software FLAC2D;based on the transformation relations for saturation degrees, temperatures and thermal expansion coefficients of expansive soil and integrating and extracting the information from both of the modules simultaneously, the hygroscopic expansion effect of expansive soil was simulated in time;the three fields involving the seepage field, displacement field and stress field were coupled under consideration for the changes of groundwater levels and permeability coefficients and intensity attenuation. And then, the numerical model with or without expansive deformation was constructed. The seepage processes from unsaturation to saturation in slopes considered and not considered the hygroscopic expansion during rainfall and the stability of slopes were simulated individually;the difference of seepage fields and slopes stability between considering and not considering the hygroscopic expansion effect in the same rainfall intensities but different rainfall duration was contrasted and analyzed. The important reason caused shallow landslides of expansive soil slopes was revealed, it was hygroscopic expansion of expansive soil. Furthermore, the stability of expansive soil slopes under different rainfall intensities and durations was further studied, the variation and distribution of the seepage field and stress field in slopes were compared and analyzed at the same time, and the effects of different rainfall conditions on shallow landslides were obtained.
  • [1]
    包承刚. 非饱和土的性状及膨胀土边坡稳定问题[J]. 岩土工程学报,2004,26(1):1-15.
    [2]
    童超, 杨和平. 由膨胀土内比表面及孔径分布来评价其膨胀行为[J]. 中外公路, 2017, 37(1):209-215.
    [3]
    张连杰. 降雨入渗条件下膨胀土边坡稳定性分析[D]. 北京:中国地质大学, 2016.
    [4]
    肖杰, 杨和平, 李晗峰, 等. 膨胀土边坡浅层破坏稳定性分析[J]. 交通运输工程学报, 2014, 14(2):21-27.
    [5]
    叶为民, 万敏, 陈宝, 等. 干湿循环条件下高压实膨润土的微观结构特征[J]. 岩土工程学报, 2011, 33(8):1173-1177.
    [6]
    魏星, 王刚. 干湿循环作用下击实膨胀土胀缩变形模拟[J]. 岩土工程学报, 2014, 36(8):1423-1431.
    [7]
    方瑾瑾, 杨小林, 冯以鑫, 等. 干湿循环后膨胀土力学特性的真三轴试验研究[J/OL]. 岩石力学与工程学报. https://doi.org/10.13722/j.cnki.jrme. 2020.0902.
    [8]
    LIU G, TOLL D G, KONG L, et al. Matric suction and volume characteristics of compacted clay soil under drying and wetting cycles[J]. Geotechnical Testing Journal, 2020, 43(2):464-479.
    [9]
    徐锴, 耿之周, 李雄威. 脱湿速率对膨胀土堑坡稳定性的影响分析[J].岩土工程学报, 2017, 39(增刊1):131-134.
    [10]
    杨和平, 程斌, 肖杰, 等. 土工格栅反包加筋支护膨胀土堑坡的工作机理[J]. 公路交通科技, 2015, 32(9):1-8.
    [11]
    程展林, 龚壁卫. 膨胀土边坡[M]. 北京:科学出版社, 2015.
    [12]
    郑俊杰,郭震山,崔岚,等. 考虑非饱和渗流与增湿膨胀下的膨胀土隧道稳定性分析[J]. 岩土力学, 2017, 38(11):3271-3277.
    [13]
    丁金华,陈仁朋,童军等. 基于多场耦合数值分析的膨胀土边坡浅层膨胀变形破坏机制研究[J]. 岩土力学,2015(增刊1):159-168.
    [14]
    张良以, 陈铁林, 张顶立. 降雨诱发膨胀土边坡渐进破坏研究[J]. 岩土工程学报, 2019, 41(1):70-77.
    [15]
    QI S, VANAPALLI S K. Hydro-mechanical coupling effect on surficial layer stability of unsaturated expansive soil slopes[J]. Computers & Geotechnics, 2015, 70:68-82.
    [16]
    石振明, 沈丹祎, 彭铭, 等.考虑多层非饱和土降雨入渗的边坡稳定性分析[J].水利学报, 2016, 47(8):977-985.
    [17]
    肖杰, 杨和平, 林京松, 等. 模拟干湿循环及含低围压条件的膨胀土三轴试验[J].中国公路学报, 2019, 32(1):21-28.
    [18]
    Itasca Consulting Group Inc. Fast lagrangian analysis of continua in two dimensions, user's manual[M]. Minnesota:Itasca Consulting Group Inc., 2011.
    [19]
    贺鹏. 降雨条件下膨胀土堑坡浅层滑坍及加筋处治效果数值模拟[D]. 长沙:长沙理工大学, 2014.
  • Relative Articles

    [1]ZHAO Yongqiang, ZHENG Zhiyuan, ZHANG Pengyuan, ZHANG Yujin, XU Qi, XU Yiming. Experimental Research on Seismic Performance of Prefabricated Concrete Shear Walls with Prefabricated Concrete Infill Walls[J]. INDUSTRIAL CONSTRUCTION, 2023, 53(1): 108-120. doi: 10.13204/j.gyjzG22022114
    [2]PENG Zhiwei, KUANG Yachuan, CHEN Yujie, WANG Shaohua, MO Xiaofei. Research on Shear Performance of a New Type of Prefabricated Shear Wall with Alveolar-Type Connections[J]. INDUSTRIAL CONSTRUCTION, 2023, 53(12): 135-142,210. doi: 10.13204/j.gyjzG22101829
    [3]PANG Rui, WANG Lu, LIU Yuhao, WANG Yixiao, DING Shusu. Experimental Research on Seismic Performance Test of Prefabricated Steel-Concrete Composite Tube Shear Walls[J]. INDUSTRIAL CONSTRUCTION, 2022, 52(4): 84-90. doi: 10.13204/j.gyjzG20050712
    [4]CHONG Xun, CHEN Zixing, JIANG Qing, HUANG Junqi, LI Haoran, FANG Xiaowen, XIE Jinchen. Research on Seismic Performance of Prefabricated Concrete Shear Wall Structures with Bolt Connections[J]. INDUSTRIAL CONSTRUCTION, 2022, 52(11): 12-18,90. doi: 10.13204/j.gyjzG21012705
    [5]LI Yun, LIU Yang, ZHANG Xianlong, HE Fujiangshan, FENG Ruoqiang. Research on Hysteretic Performance of Grid-Tube Double Steel Plate Shear Walls[J]. INDUSTRIAL CONSTRUCTION, 2022, 52(11): 32-38. doi: 10.13204/j.gyjzG21081212
    [6]WU Dongyue, PEND Xiangdong, LU Yinjie, CHEN Wei, WANG Shilin, WANG Xu, FU Qian. Experimental Research on Seismic Performance of Reinforced Tenon Precast Low-Rise Shear Walls[J]. INDUSTRIAL CONSTRUCTION, 2022, 52(7): 72-78. doi: 10.13204/j.gyjzg21070909
    [7]LIU Xinhu, HUANG Dadian. Research on Mechanical Properties of CLT Wall-to-Floor Joints with Angle Bracket[J]. INDUSTRIAL CONSTRUCTION, 2022, 52(4): 107-113. doi: 10.13204/j.gyjzG21081309
    [8]YU Hongran, WANG Yan, AN Qi. SEISMIC PERFORMANCE ANALYSIS OF ANCHORING PREFABRICATED WALL-BEAM JOINT OF STEEL TUBE BUNDLE COMPOSITE SHEAR WALL STRUCTURE[J]. INDUSTRIAL CONSTRUCTION, 2021, 51(6): 84-94. doi: 10.13204/j.gyjzG20100401
    [9]LYU Yuangui, HU Longping, ZHANG Xiangchao, ZHANG Heng, LI Jianchuang, YU Min, CHI Yin. EXPERIMENTAL STUDY ON SEISMIC PERFORMANCE OF T-SHAPED PREFABRICATED CONCRETE SHEAR WALL CONNECTED WITH A VERTICAL SEAM[J]. INDUSTRIAL CONSTRUCTION, 2021, 51(5): 56-62. doi: 10.13204/j.gyjz201908300010
    [10]WANG Yuliang, CUI Hongjun, ZHANG Yumin, CAI Zhanjun, XU Lixian. EXPERIMENTAL RESEARCH ON SEISMIC BEHAVIOR OF PREFABRICATED SHEAR WALL WITH ENERGY DISSIPATION BY VERTICAL JOINTS[J]. INDUSTRIAL CONSTRUCTION, 2020, 50(11): 46-51. doi: 10.13204/j.gyjzG19102703
    [11]CHONG, Xun, SONG, Lei, CHEN, Changlin, WANG. RESEARCH ON THE SEISMIC BEHAVIOR OF FACADE PANEL OF PREFABRICATED CONCRETE SHEAR WALL WITH DAMPER[J]. INDUSTRIAL CONSTRUCTION, 2020, 50(1): 40-46. doi: 10.13204/j.gyjz202001008
    [18]Yuan Kang, Li Yingmin, Zhang Songbai. STUDY OF UNIDIRECTIONAL WALL FRAMES' INFLUENCE ON THE SEISMIC PERFORMANCE OF SHEAR WALL STRUCTURE[J]. INDUSTRIAL CONSTRUCTION, 2014, 44(07): 37-41.
    [19]Tu Yongming, Lv Zhitao, Zhang Jiwen, Chen Jie, Qian Yang. LATERAL PERFORMANCE OF THE MAIN STRUCTURE OF CORE-TUBE SUSPENDED VIBRATION ABSORPTION SYSTEM[J]. INDUSTRIAL CONSTRUCTION, 2008, 38(12): 49-53. doi: 10.13204/j.gyjz200812014
    [20]Zong Lan, Sui Chengquan. EXPERIMENTAL STUDY ON SEISMIC PERFORMANCE OF FRICTION DAMPING SHEAR WALLS[J]. INDUSTRIAL CONSTRUCTION, 2004, 34(12): 42-44,47. doi: 10.13204/j.gyjz200412011
  • Cited by

    Periodical cited type(1)

    1. 王界贤,姚利宏,刘睿静. CLT结构建筑体系与建筑技术研究进展. 林产工业. 2022(09): 60-63+68 .

    Other cited types(4)

  • Created with Highcharts 5.0.7Amount of accessChart context menuAbstract Views, HTML Views, PDF Downloads StatisticsAbstract ViewsHTML ViewsPDF Downloads2024-042024-052024-062024-072024-082024-092024-102024-112024-122025-012025-022025-0302468
    Created with Highcharts 5.0.7Chart context menuAccess Class DistributionFULLTEXT: 8.8 %FULLTEXT: 8.8 %META: 90.4 %META: 90.4 %PDF: 0.8 %PDF: 0.8 %FULLTEXTMETAPDF
    Created with Highcharts 5.0.7Chart context menuAccess Area Distribution其他: 8.8 %其他: 8.8 %China: 0.8 %China: 0.8 %上海: 0.8 %上海: 0.8 %东莞: 0.8 %东莞: 0.8 %北京: 4.8 %北京: 4.8 %南京: 0.8 %南京: 0.8 %南通: 0.8 %南通: 0.8 %圣彼得堡: 0.8 %圣彼得堡: 0.8 %太原: 0.8 %太原: 0.8 %宿州: 0.8 %宿州: 0.8 %常州: 0.8 %常州: 0.8 %张家口: 4.8 %张家口: 4.8 %成都: 0.8 %成都: 0.8 %扬州: 0.8 %扬州: 0.8 %晋城: 0.8 %晋城: 0.8 %朝阳: 0.8 %朝阳: 0.8 %杭州: 3.2 %杭州: 3.2 %温州: 1.6 %温州: 1.6 %石家庄: 0.8 %石家庄: 0.8 %芒廷维尤: 36.8 %芒廷维尤: 36.8 %芝加哥: 1.6 %芝加哥: 1.6 %西宁: 12.0 %西宁: 12.0 %贵阳: 4.0 %贵阳: 4.0 %运城: 8.0 %运城: 8.0 %邯郸: 0.8 %邯郸: 0.8 %重庆: 1.6 %重庆: 1.6 %长沙: 0.8 %长沙: 0.8 %其他China上海东莞北京南京南通圣彼得堡太原宿州常州张家口成都扬州晋城朝阳杭州温州石家庄芒廷维尤芝加哥西宁贵阳运城邯郸重庆长沙

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (114) PDF downloads(5) Cited by(5)
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return