Core Chinese Journal
Source Journal of CSCD
Source Journal for Chinese Scientific and Technical Papers
Core Journal of RCCSE
Included in JST China
Included in the Hierarchical Directory of High-quality Technical Journals in Architecture Science Field
Volume 53 Issue 9
Sep.  2023
Turn off MathJax
Article Contents
QIN Sizhong, ZHENG Zhe, GU Yi, LU Xinzheng. Exploring and Discussion on the Application of Large Language Models in Construction Engineering[J]. INDUSTRIAL CONSTRUCTION, 2023, 53(9): 162-169. doi: 10.13204/j.gyjzG23081006
Citation: QIN Sizhong, ZHENG Zhe, GU Yi, LU Xinzheng. Exploring and Discussion on the Application of Large Language Models in Construction Engineering[J]. INDUSTRIAL CONSTRUCTION, 2023, 53(9): 162-169. doi: 10.13204/j.gyjzG23081006

Exploring and Discussion on the Application of Large Language Models in Construction Engineering

doi: 10.13204/j.gyjzG23081006
  • Received Date: 2023-08-10
    Available Online: 2023-11-08
  • As one of China's key industries and economic pillars, the construction industry has long been plagued by low productivity and limited levels of automation. However, large language models present new possibilities for industry advancement. This paper proposes an application framework for large language models in construction engineering, utilizing prompt engineering and a local knowledge base to enhance model performance. The effectiveness of the proposed framework is validated through experimental analysis, exploring its feasibility in various domains within the industry and providing detailed application examples for specific tasks. The experimental results indicate that although there is still room for improvement in tackling complex problems, large language models have already demonstrated their potential to replace certain text-related tasks in construction engineering, offering a new direction for the future development of the construction industry.
  • loading
  • [1]
    GOOGLE. 体验Bard-Google的AI实验项目[EB/OL].[2023-07-20]. https://bard.google.com.
    [2]
    DU Z, QIAN Y, LIU X, et al. GLM:General language model pretraining with autoregressive blank infilling[C]//Proceedings of the 60th annual meeting of the association for computational linguistics. 2022:320-335.
    [3]
    百度. 文心大模型-产业级知识增强大模型[EB/OL].[2023-07-20]. https://wenxin.baidu.com/.
    [4]
    阿里巴巴. 通义千问[EB/OL].[2023-08-09]. https://qianwen.aliyun.com/.
    [5]
    科大讯飞. 讯飞星火认知大模型[EB/OL].[2023-07-20]. https://xinghuo.xfyun.cn/.
    [6]
    赵峰, 王要武, 金玲, 等. 2022年建筑业发展统计分析[J]. 工程管理学报, 2023, 37(1):1-6.
    [7]
    许宪春, 王洋, 唐雅. 2022年中国经济形势分析与2023年展望[J]. 经济学动态, 2023(2):19-32.
    [8]
    加快建筑业转型推动高质量发展:住房和城乡建设部建筑市场监管司副司长廖玉平解读《指导意见》[J]. 工程建设标准化, 2020(8):12-14.
    [9]
    陆新征, 廖文杰, 顾栋炼, 等. 从基于模拟到基于人工智能的建筑结构设计方法研究进展[J/OL]. 工程力学:1-18[2023-09-17

    ]. http://kns.cnki.net/kcms/detail/11.2595.O3.20230117.0853.002.html.
    [10]
    丁烈云, 徐捷, 覃亚伟. 建筑3D打印数字建造技术研究应用综述[J]. 土木工程与管理学报, 2015, 32(3):1-10.
    [11]
    郭红领, 王尧, 马琳瑶, 等. 土木工程施工安全研究的现状与趋势[J]. 华中科技大学学报(自然科学版), 2022, 50(8):89-98.
    [12]
    JR B F S, HOSKERE V, NARAZAKI Y. Advances in computer vision-based civil infrastructure inspection and monitoring[J]. Engineering, 2019, 5(2):199-248.
    [13]
    BAEK S, JUNG W, HAN S H. A critical review of text-based research in construction:data source, analysis method, and implications[J/OL]. Automation in Construction, 2021, 132,103915. https://doi.org/10.1016/j.autcon.2021.103915.
    [14]
    王煜, 邓晖, 李晓瑶, 等. 自然语言处理技术在建筑工程中的应用研究综述[J]. 图学学报, 2020, 41(4):501-511.
    [15]
    刘湧泉. 我国机器翻譯工作的进展[J]. 科学通报, 1959(17):563-564.
    [16]
    DING Y, MA J, LUO X. Applications of natural language processing in construction[J/OL]. Automation in Construction, 2022, 136. https://doi.org/10.1016/j.autcon.2022.104169.
    [17]
    CALDAS C H, SOIBELMAN L, HAN J. Automated classification of construction project documents[J]. Journal of Computing in Civil Engineering, 2002, 16(4):234-243.
    [18]
    CALDAS C H, SOIBELMAN L. Automating hierarchical document classification for construction management information systems[J]. Automation in Construction, 2003, 12(4):395-406.
    [19]
    KRIZHEVSKY A, SUTSKEVER I, HINTON G E. ImageNet classification with deep convolutional neural networks[C/OL]//Advances in Neural Information Processing Systems. Curran Associates, Inc., 2012[2023-08-04]. https://proceedings.neurips.cc/paper/2012/hash/c399862d3b9d6b76c8436e924a68c45b-Abstract.html.
    [20]
    ALOM M Z, TAHA T M, YAKOPCIC C, et al. The History Began from Alexnet:A Comprehensive Survey on Deep Learning Approaches[M/OL]. arXiv, 2018[2023-08-04]. http://arxiv.org/abs/1803.01164. https://doi.org/10.48550/arXiv.1803.01164.
    [21]
    YU W der, HSU J Y. Content-based text mining technique for retrieval of CAD documents[J]. Automation in Construction, 2013, 31:65-74.
    [22]
    SHEN L, YAN H, FAN H, et al. An integrated system of text mining technique and case-based reasoning (TM-CBR) for supporting green building design[J]. Building and Environment, 2017, 124:388-401.
    [23]
    TIXIER A J P, HALLOWELL M R, RAJAGOPALAN B, et al. Automated content analysis for construction safety:A natural language processing system to extract precursors and outcomes from unstructured injury reports[J]. Automation in Construction, 2016, 62:45-56.
    [24]
    SALAMA D M, EL-GOHARY N M. Semantic text classification for supporting automated compliance checking in construction[J/OL]. Journal of Computing in Civil Engineering, 2016, 30(1). https://doi.org/10.1061/(ASCE)CP.1943-5487.0000301.
    [25]
    汪旭. 建筑质量投诉文本分类与知识问答系统研究[D]. 武汉:华中科技大学, 2018.
    [26]
    VASWANI A, SHAZEER N, PARMAR N, et al. Attention Is All You Need[M/OL]. arXiv, 2023[2023-08-04]. http://arxiv.org/abs/1706.03762.
    [27]
    DEVLIN J, CHANG M W, LEE K, et al. BERT:Pre-training of Deep Bidirectional Transformers for Language Understanding[M/OL]. arXiv, 2019[2023-07-20]. http://arxiv.org/abs/1810.04805.
    [28]
    ZHENG Z, LU X Z, CHEN K Y, et al. Pretrained domain-specific language model for natural language processing tasks in the AEC domain[J/OL]. Computers in Industry, 2022, 142, 103733. https://doi.org/10.1016/j.compind.2022.103733.
    [29]
    PRIETO S A, MENGISTE E T, GARCÍA DE SOTO B. Investigating the Use of ChatGPT for the Scheduling of Construction Projects[J/OL]. Buildings, 2023, 13(4), 857. https://doi.org/10.3390/buildings13040857.
    [30]
    UDDIN S M J, ALBERT A, OVID A, et al. Leveraging ChatGPT to aid construction hazard recognition and support safety education and training[J/OL]. Sustainability, 2023, 15(9), 7121. https://doi.org/10.3390/su15097121.
    [31]
    JI S, PAN S, CAMBRIA E, et al. Survey on knowledge graphs:representation, acquisition, and applications[J]. IEEE Transactions on Neural Networks and Learning Systems, 2022, 33(2):494-514.
    [32]
    wenda-LLM/wenda:闻达:一个LLM调用平台[EB/OL]//GitHub.[2023-08-09]. https://github.com/wenda-LLM/wenda.
    [33]
    REIMERS N, GUREVYCH I. Sentence-BERT:Sentence embeddings using siamese BERT-Networks[C/OL]//Proceedings of the 2019 conference on empirical methods in natural language processing. Association for Computational Linguistics, 2019. https://arxiv.org/abs/1908.10084.
    [34]
    JOHNSON J, DOUZE M, JÉGOU H. Billion-scale similarity search with GPUs[J]. IEEE Transactions on Big Data, 2019, 7(3):535-547.
    [35]
    TOUVRON H, LAVRIL T, IZACARD G, et al. LLaMA:Open and Efficient Foundation Language Models[M/OL]. arXiv, 2023[2023-07-20]. http://arxiv.org/abs/2302.13971.
    [36]
    叶列平. 混凝土结构(上册)[M]. 第2版. 北京:中国建筑工业出版社, 2014.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (330) PDF downloads(25) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return