Source Journal of Chinese Scientific and Technical Papers
Included as T2 Level in the High-Quality Science and Technology Journals in the Field of Architectural Science
Core Journal of RCCSE
Included in the CAS Content Collection
Included in the JST China
Indexed in World Journal Clout Index (WJCI) Report
XU Mingwen, SU Yanli, WANG Xinru, JIN Chenhua, WU Chang, ZHOU Zhen. Experimental Research on Shear Performance of V-Notched PE-ECC Beams[J]. INDUSTRIAL CONSTRUCTION, 2023, 53(9): 149-155. doi: 10.13204/j.gyjzG23072614
Citation: XU Mingwen, SU Yanli, WANG Xinru, JIN Chenhua, WU Chang, ZHOU Zhen. Experimental Research on Shear Performance of V-Notched PE-ECC Beams[J]. INDUSTRIAL CONSTRUCTION, 2023, 53(9): 149-155. doi: 10.13204/j.gyjzG23072614

Experimental Research on Shear Performance of V-Notched PE-ECC Beams

doi: 10.13204/j.gyjzG23072614
  • Received Date: 2023-07-26
    Available Online: 2023-11-08
  • Through shear tests on 12 polyethylene fiber-reinforced engineered cementitious composite (PE-ECC) V-notched beams, the effects of different mix proportion and fiber content on the shear performance of V-notched PE-ECC beams were studied. The test results showed that the V-notched beam with pure matrix was obvious brittle damage, while the V-notched PE-ECC beam was ductile damage. The cracks of the V-notched PE-ECC beams mainly appeared in the region between the loading point and the support on both sides of the notch, and the V-notched PE-ECC beams exhibited multi-cracking characteristics. When the load reached the peak load, the specimen shows the main crack and the specimen had obvious deflection. When the fiber content is in the range of 0%-2%, the shear capacity and ductility of V-notched PE-ECC beams increased with the increase of fiber content, and the crack propagation of the specimens with 2% fiber content was more sufficient than that of the specimens with 1% fiber content, while the average shear strength of PE-ECC was 9.46 MPa, which was 1.79 times of the axial tensile strength, when the fiber content is 2%.
  • [1]
    伍威, 朱伟超, 王雪纯. 工程水泥基复合材料的现状分析及应用[J]. 四川建材, 2017, 43(1):14-16.
    [2]
    LI V C, LEUNG C K Y. Steady-state and multiple cracking of short random fiber composites[J]. Journal of Engineering Mechanics(ASCE), 1992, 118(11):2246-2264.
    [3]
    LI V C, STANG H, KRENCHEL H. Micromechanics of crack bridging in fiber-reinforced concrete[J]. Materials and Structures, 1993, 26(162):486-494.
    [4]
    LI V C, KANDA T. Engineered cementitious composites for structural applications[J]. Journal of Materials in Civil Engineering, 1998, 10(2):66-69.
    [5]
    LI V C, WANG S X, WU C. Tensile Strain-hardening behavior of polyvinyl alcohol engineered cementitious composite (PVA-ECC)[J]. ACI Materials Journal, 2001, 98(6):483-492.
    [6]
    丁一, 陈小兵, 李荣. ECC材料的研究进展与应用[J]. 建筑结构, 2007, 37(增刊1):378-382.
    [7]
    汪卫, 潘钻峰, 孟少平, 等. 国产PVA纤维增强水泥基复合材料力学性能研究[J]. 工业建筑, 2014, 44(增刊1):958-964.
    [8]
    YU K Q, YU J T, DAI J G, et al. Development of ultra-high performance engineered cementitious composites using polyethylene (pe) fibers[J]. Construction Building Material, 2018, 158:217-227.
    [9]
    HUANG B T, ZHU J X, WENG K F, et al. Ultra-high-strength engineered/strain-hardening cementitious composites (ECC/SHCC):material design and effect of fiber hybridization[J/OL]. Cement and Concrete Composites, 2022, 129[2023-07-26].https://doi.org/10.1016/j.cemconcomp.2022.104464.
    [10]
    LI V C, MISHRA D K, NAAMAN A E, et al. On the shear behavior of engineered cementitious composites[J]. Advanced Cement Based Materials, 1994, 1(3):142-149.
    [11]
    VAN ZIJL G P A G. Improved mechanical performance:shear behaviour of strain-hardening cement-based composites (SHCC)[J]. Cement and Concrete Research, 2007, 37(8):1241-1247.
    [12]
    PAEGLE I, FISCHER G. Phenomenological interpretation of the shear behavior of reinforced engineered cementitious composite beams[J]. Cement and Concrete Composites, 2016, 73:213-225.
    [13]
    HOU L J, XU S L, ZHANG X F, et al. Shear behaviors of reinforced ultrahigh toughness cementitious composite slender beams with stirrups[J]. Journal of Materials in Civil Engineering, 2014, 26(3):466-475.
    [14]
    潘钻峰, 刘籍蔚, 吴畅, 等. 外包配筋ECC组合柱抗震性能试验研究与有限元分析[J]. 建筑结构学报, 2017, 38(9):38-45.
    [15]
    蔡景明, 潘金龙, 苏浩. 钢筋增强ECC-钢管混凝土组合柱抗震性能试验及其数值模拟[J]. 建筑结构学报, 2020, 41(7):55-62.
    [16]
    俞可权, 余江滔, 李凌志, 等. 可用于无筋建造的超高延性水泥基复合材料力学性能研究[J]. 建筑结构, 2019, 49(2):29-35

    , 42.
    [17]
    邓明科, 刘华政, 马福栋, 等. 聚乙烯醇纤维改性高延性混凝土双面剪切试验及剪切韧性评价方法[J]. 复合材料学报, 2020, 37(2):461-471.
    [18]
    王玉清, 刘潇, 高元明, 等. 不同纤维掺量下聚乙烯醇纤维增强工程水泥复合材料梁剪切韧性试验[J]. 复合材料学报, 2019, 36(8):1968-1976.
    [19]
    中华人民共和国工业和信息化部. 高延性纤维增强水泥基复合材料力学性能试验方法:JC/T 2416-2018[S]. 北京:中国建材工业出版社,2018.
    [20]
    KANAKUBO T, SHIMIZU K, NAGAI S, et al. Shear transmission on crack surface of ECC[C]//In Proceedings 7th International Conference on Fracture Mechanics of Concrete and Concrete Structures (FraMCoS-7). Jeju, Korea:2010:1623-1630.
  • Relative Articles

    [1]DING Shijun, DING Mintao, MAN Yin, NIE Zhibao. Analysis on Effect Factors and Characteristics of Shear Properties for Interfaces Between Basalt and Concrete[J]. INDUSTRIAL CONSTRUCTION, 2023, 53(1): 194-200. doi: 10.13204/j.gyjzG22060607
    [2]DING Xiaobo, WU Meizhong, FANG Wujun, YUAN Fang, GUO Shijie, LI Weiwen, TANG Shiying. Experimental Research on Shear Fatigue Performance of Concrete Beams Reinforced with CFRP Strip Stirrups[J]. INDUSTRIAL CONSTRUCTION, 2023, 53(6): 202-208,42. doi: 10.13204/j.gyjzG22081906
    [3]YANG Zhao, DOU Nan, DONG Hao. EXPERIMENTAL RESEARCH ON BONDING PROPERTIES OF SHAPE-MEMORY ALLOY FIBERS IN HIGH DUCTILITY CEMENT-BASED COMPOSITES[J]. INDUSTRIAL CONSTRUCTION, 2021, 51(9): 188-196. doi: 10.13204/j.gyjzG21022004
    [4]ZHU Fangzhi, MA Zhiming, ZUO Gong, GAO Li. EXPERIMENTAL STUDY ON MECHANICAL PROPERTIES OF SLEEVE SPLICING GROUTED WITH PVA FIBER-REINFORCED CEMENTITIOUS COMPOSITES[J]. INDUSTRIAL CONSTRUCTION, 2021, 51(1): 152-156,178. doi: 10.13204/j.gyjzG19102204
    [5]LU Zhaohong, WANG Kaibo, WANG Zunce, ZHANG Dong, YAN Feng, OUYANG Xin. EFFECT OF THE MOISTURE CONTENT ON MECHANICAL PROPERTIES OF FROZEN SILTY CLAY[J]. INDUSTRIAL CONSTRUCTION, 2021, 51(3): 153-157,97. doi: 10.13204/j.gyjzG20040904
    [6]WANG Chenyu, PENG Wenhao, LI Suchao, FANG Qinghe. A CONSTITUTIVE MODEL OF METALLIC RUBBER BEARINGS BASED ON STATISTICAL CONTACT PROPERTIES[J]. INDUSTRIAL CONSTRUCTION, 2021, 51(11): 25-30. doi: 10.13204/j.gyjzG21052416
    [7]YUAN Zesen, LIU Zhenliang, LI Suchao, WANG Zhiyuan. RESEARCH ON SHEAR PROPERTIES AND SELF-RECOVERY CHARACTERISTICS OF SHAPE MEMORY ALLOY PSEUDO-RUBBER BEARINGS[J]. INDUSTRIAL CONSTRUCTION, 2021, 51(11): 1-6,18. doi: 10.13204/j.gyjzG21052419
    [8]FU Yunpeng, BAO Wenbo. SHEAR AND FLEXURAL TOUGHNESS OF TAILINGS SAND CEMENT-BASED COMPOSITES REINFORCED BY PVA[J]. INDUSTRIAL CONSTRUCTION, 2020, 50(12): 82-87. doi: 10.13204/j.gyjzG20011014
    [9]SHU Xingping, DONG Yuchen, LU Beirong, CAI Jun. EXPERIMENTAL STUDY AND FINITE ELEMENT SIMULATION FOR SHEAR PROPERTIES OF CORE TUBES FOR THE STRUCTURE OF STAINLESS STEEL SANDWICH PANEL[J]. INDUSTRIAL CONSTRUCTION, 2020, 50(2): 10-16. doi: 10.13204/j.gyjz202002002
    [17]Yang Zhong Ye Xianguo, . STUDY OF SEISMIC PERFORMANCE OF ULTRAHIGH TOUGHNESS CEMENTITIOUS COMPOSITE COUPLING BEAMS WITH SMALL SPAN-DEPTH RATIO[J]. INDUSTRIAL CONSTRUCTION, 2015, 45(10): 79-83. doi: 10.13204/j.gyjz201510015
    [18]Wang Haichao, Wang Zhijun, Gao Shuling, Sun Fangning, Zhang Lingling, Qin Jingping. EXPERIMENTAL DETERMINATION OF FRACTURE TOUGHNESS OF THREE-POINT BENDING UHPCC BEAM AND INFLUENCE LAW[J]. INDUSTRIAL CONSTRUCTION, 2013, 43(9): 106-110. doi: 10.13204/j.gyjz201309020
    [19]Wang Xiaocui, Shi Li'an, Wu Kai. EFFECT OF PVA FIBERS ON THE PROPERTIES OF CEMENT- BASED MATERIALS[J]. INDUSTRIAL CONSTRUCTION, 2012, 42(4): 103-106. doi: 10.13204/j.gyjz201204022
    [20]Liu Fan, Weng Xiaohong, Shao Yongjian. EXPERIMENTAL STUDY ON SHEAR PERFORMANCE OF STEEL REINFORCED LIGHTWEIGHT AGGREGATE CONCRETE BEAMS[J]. INDUSTRIAL CONSTRUCTION, 2009, 39(3): 56-59. doi: 10.13204/j.gyjz200903017
  • Cited by

    Periodical cited type(2)

    1. 阎杰,邢国斌,冯龙辉,梁重阳,谢军,翁维素,白启敬. 苎麻纤维对再生混凝土力学强度的影响. 硅酸盐通报. 2025(02): 455-462 .
    2. 刘星,刘洋,张林涛,徐创霞,孙吉林,李继芸. 基于响应面法的砌体加固用高韧性混凝土配合比设计. 四川建筑科学研究. 2024(05): 81-89 .

    Other cited types(1)

  • Created with Highcharts 5.0.7Amount of accessChart context menuAbstract Views, HTML Views, PDF Downloads StatisticsAbstract ViewsHTML ViewsPDF Downloads2024-062024-072024-082024-092024-102024-112024-122025-012025-022025-032025-042025-0502.557.51012.515
    Created with Highcharts 5.0.7Chart context menuAccess Class DistributionFULLTEXT: 28.3 %FULLTEXT: 28.3 %META: 70.0 %META: 70.0 %PDF: 1.7 %PDF: 1.7 %FULLTEXTMETAPDF
    Created with Highcharts 5.0.7Chart context menuAccess Area Distribution其他: 18.3 %其他: 18.3 %上海: 0.6 %上海: 0.6 %东莞: 0.6 %东莞: 0.6 %北京: 0.6 %北京: 0.6 %南京: 3.3 %南京: 3.3 %台州: 0.6 %台州: 0.6 %嘉兴: 0.6 %嘉兴: 0.6 %天津: 0.6 %天津: 0.6 %宣城: 0.6 %宣城: 0.6 %常德: 2.2 %常德: 2.2 %张家口: 1.1 %张家口: 1.1 %成都: 1.1 %成都: 1.1 %扬州: 2.8 %扬州: 2.8 %昆明: 1.1 %昆明: 1.1 %晋城: 0.6 %晋城: 0.6 %杭州: 1.7 %杭州: 1.7 %桂林: 0.6 %桂林: 0.6 %济南: 0.6 %济南: 0.6 %深圳: 3.3 %深圳: 3.3 %温州: 1.1 %温州: 1.1 %漯河: 1.7 %漯河: 1.7 %烟台: 0.6 %烟台: 0.6 %芒廷维尤: 20.0 %芒廷维尤: 20.0 %芝加哥: 0.6 %芝加哥: 0.6 %衢州: 0.6 %衢州: 0.6 %西宁: 30.6 %西宁: 30.6 %西安: 1.1 %西安: 1.1 %贵阳: 0.6 %贵阳: 0.6 %运城: 2.2 %运城: 2.2 %郑州: 0.6 %郑州: 0.6 %其他上海东莞北京南京台州嘉兴天津宣城常德张家口成都扬州昆明晋城杭州桂林济南深圳温州漯河烟台芒廷维尤芝加哥衢州西宁西安贵阳运城郑州

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (125) PDF downloads(3) Cited by(3)
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return