Source Journal of Chinese Scientific and Technical Papers
Included as T2 Level in the High-Quality Science and Technology Journals in the Field of Architectural Science
Core Journal of RCCSE
Included in the CAS Content Collection
Included in the JST China
Indexed in World Journal Clout Index (WJCI) Report
Li Yuqi, Xie Kanghe. PREDICTION AND ANALYSIS OF DEFORMATION OF DEEP EXCAVATION[J]. INDUSTRIAL CONSTRUCTION, 2004, 34(9): 19-21,80. doi: 10.13204/j.gyjz200409006
Citation: PAN Liang, CAO Jiahao, XUE Qiang, WANG Kai, LAN Xu, WANG Xiaoliang. Research on Design Method of Cylindrical-Cone Steel Structure Cooling Towers[J]. INDUSTRIAL CONSTRUCTION, 2023, 53(11): 145-155,138. doi: 10.13204/j.gyjzG23053107

Research on Design Method of Cylindrical-Cone Steel Structure Cooling Towers

doi: 10.13204/j.gyjzG23053107
  • Received Date: 2023-05-31
  • A new cylindrical-cone steel cooling tower was proposed, and the concrete cooling tower was selected as a reference for the comparison study, which verified the technical achievability and structural reliability of the steel cooling tower, the results showed that its cost and duration were less than the concrete cooling tower. The calculation formulae for the axial, flexural, shear and torsional stiffness of the four-sided angle steel lattice type members was derived, on which the equivalent substitution principle and calculation method of the box-type thin-walled units were proposed, and the correction coefficients of the stiffness parameters were optained, which were analyzed and calibrated by using the finite element model. The results showed that the equivalent substitution of cross-sectional stiffness proposed in the paper had high accuracy and could meet the requcrements of engineering accuracy. By introducing the negative stiffness of axial force, the formula of calculated length coefficient applicable to general space structures was obtained.
  • [1]
    陈建斌,郭彦林,薛海君,等.新型空冷钢塔结构体系研究[J].工业建筑, 2012, 42(11):131-135.
    [2]
    钟鑫伟,窦超,王垆涛,等.桁架加劲单层网壳钢结构冷却塔结构优化设计研究[J].空间结构, 2019, 25(1):23-30.
    [3]
    KOLLÁR L. Large reticulated steel cooling towers[J]. Engineering Structures, 1985, 7(4):263-267.
    [4]
    KATO S, NAKAZAWA S, SHIMAOKA S, et al. Effectiveness of buckling restrained members for diagonal columns to reduce the seismic response of cooling towers[C]//The 5th International Symposium on Natural Draught Cooling Tower. Istanbul:2004:299-309.
    [5]
    IZADI M, BARGI K. Natural draft steel hyperbolic cooling towers:optimization and performance evaluation[J]. Structural Design of Tall&Special Buildings, 2014, 23(9):713-720.
    [6]
    尹麟,何敏娟.钢结构双曲抛物面冷却塔探索[J].特种结构, 2005(2):41-43.
    [7]
    白光波,朱忠义,董石麟,等.带支撑三角形网格构成的钢结构冷却塔及其受力性能[J].空间结构, 2017, 23(4):3-11.
    [8]
    柯世堂,杜凌云,刘东华,等.直筒-锥段型钢结构冷却塔平均风荷载及静风响应分析[J].振动与冲击,2017,36(7):149-155.
    [9]
    王浩,柯世堂.基于大涡模拟超大直筒-锥段型钢结构冷却塔极值风压研究[J].振动与冲击, 2018, 37(7):69-76.
    [10]
    朱谢联,董石麟.六杆四面体双曲面冷却塔网壳的构形、静力与稳定性能[J].浙江大学学报(工学版), 2019, 53(10):1907-1915.
    [11]
    中华人民共和国住房和城乡建设部.工业循环水冷却设计规范:GB/T 50102-2014[S].北京:中国计划出版社, 2014.
    [12]
    国家能源局.火力发电厂水工设计规范:DL/T 5339-2018[S].北京:中国计划出版社, 2018.
    [13]
    丛培江,李敬生,陈德智,等.间接空冷塔结构优化设计[J].电力建设, 2011, 32(4):55-58.
    [14]
    王凯.大型直筒-锥段型钢结构冷却塔静力和稳定分析[D].西安:西安建筑科技大学, 2019.
    [15]
    程斌,何胜华,赵金城.基于杆端缩尺的钢桁架结构二次优化[J].建筑结构学报, 2011, 32(9):135-140.
    [16]
    赵思远,王宏,郭彦林.平面桁架拱平面外弹性稳定及设计方法研究[J].建筑结构, 2016, 46(增刊1):523-527.
    [17]
    中华人民共和国住房和城乡建设部.钢结构设计标准:GB 50017-2017[S].北京:中国建筑工业出版社, 2018.
    [18]
    童根树,施祖元,李志飚.计算长度系数的物理意义及对各种钢框架稳定设计方法的评论[J].建筑钢结构进展, 2004, 6(4):1-8.
    [19]
    薛强,郝际平,王迎春.化肥工业造粒塔结构稳定设计方法研究[J].工业建筑, 2011, 41(4):107-111.
    [20]
    薛强.考虑二阶效应的钢框架抗震设计研究[D].西安:西安建筑科技大学, 2012.
  • Relative Articles

    [3]Zhang Wenxue, Li Zengyin, Liu Long. COMPARISON AND ANALYSIS ON LATERAL PRESSURE OF CONCRETE FORMWORK FROM DIFFERENT FORMULAS[J]. INDUSTRIAL CONSTRUCTION, 2014, 44(07): 132-136.
    [4]Hu Changming, Zhao Yunbo, Wang Jie, Liu Fengyun. FINITE ELEMENT ANALYSIS OF COOPERATIVE EFFECTS OF FORMWORK-SUPPORTING SYSTEM AND CONCRETE FLOORS[J]. INDUSTRIAL CONSTRUCTION, 2014, 44(05): 115-121.
    [5]Zheng Lianqiong, Cai Xuefeng, Zhuang Jinping, Zhou Jizhong, Tuo Mingbei. ON-SITE MEASUREMENT AND ANALYSIS OF SUPER HIGH OR LARGE-SPAN FORMWORK SUPPORT WITH FASTENER STEEL TUBE[J]. INDUSTRIAL CONSTRUCTION, 2013, 43(7): 96-100. doi: 10.13204/j.gyjz201307022
    [6]Lin Zhangzhang, Zhang Yi, Yang Junjie. ANALYSIS OF MULTI-STORY FORMWORK SUPPORTING SYSTEM BY DETECTION AND FEM[J]. INDUSTRIAL CONSTRUCTION, 2013, 43(2): 94-98. doi: 10.13204/j.gyjz201302019
    [7]Bai Xue, Ma Haibin, Yao Chuanqin, Bai Rong. DESIGN AND MODAL ANALYSIS OF JACKING FORM SYSTEM FOR SUPER HIGH-RISE BUILDING[J]. INDUSTRIAL CONSTRUCTION, 2013, 43(5): 14-17,51. doi: 10.13204/j.gyjz201305003
    [8]Zhang Xuezhi, Zhang Xuefeng, Ying Yimiao, Wang Senjun. ACTUAL MEASUREMENT AND ANALYSIS OF HIGH FORM STRUT OF FASTENER-STYLE STEEL PIPE SCAFFOLD SYSTEM[J]. INDUSTRIAL CONSTRUCTION, 2011, 41(1): 15-18. doi: 10.13204/j.gyjz201101004
    [9]Mei Yuan, Hu Changming, Zhou Zhengyong, Jiang Ming, Wang Xia. STATISTICAL ANALYSIS OF LOADS OF SUPPORTING STRUCTURE FOR TALL AND LARGE FALSEWORK DURING CONSTRUCTION[J]. INDUSTRIAL CONSTRUCTION, 2010, 40(2): 42-46. doi: 10.13204/j.gyjz201002010
    [10]Hu Changming, Mei Yuan, Dong Pan, Zhang Xiaoyong. ANALYSIS AND STUDY ON THE BEARING CAPACITY REDUCTION FACTOR OF COUPLER TALL FALSEWORK[J]. INDUSTRIAL CONSTRUCTION, 2010, 40(2): 12-16. doi: 10.13204/j.gyjz201002003
    [11]Chen Zhihua, Han Juan, . STUDY ON ARCHITECTURAL CONCRETE AND ITS APPLICATION IN TIANJIN MUSEUM[J]. INDUSTRIAL CONSTRUCTION, 2005, 35(4): 72-75. doi: 10.13204/j.gyjz200504021
  • Created with Highcharts 5.0.7Amount of accessChart context menuAbstract Views, HTML Views, PDF Downloads StatisticsAbstract ViewsHTML ViewsPDF Downloads2024-042024-052024-062024-072024-082024-092024-102024-112024-122025-012025-022025-0305101520
    Created with Highcharts 5.0.7Chart context menuAccess Class DistributionFULLTEXT: 12.2 %FULLTEXT: 12.2 %META: 84.6 %META: 84.6 %PDF: 3.3 %PDF: 3.3 %FULLTEXTMETAPDF
    Created with Highcharts 5.0.7Chart context menuAccess Area Distribution其他: 7.0 %其他: 7.0 %其他: 12.3 %其他: 12.3 %北京: 7.0 %北京: 7.0 %台州: 1.8 %台州: 1.8 %张家口: 3.5 %张家口: 3.5 %扬州: 1.8 %扬州: 1.8 %杭州: 1.8 %杭州: 1.8 %湖州: 5.3 %湖州: 5.3 %芒廷维尤: 24.6 %芒廷维尤: 24.6 %衢州: 1.8 %衢州: 1.8 %西宁: 29.8 %西宁: 29.8 %重庆: 1.8 %重庆: 1.8 %长春: 1.8 %长春: 1.8 %其他其他北京台州张家口扬州杭州湖州芒廷维尤衢州西宁重庆长春

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (111) PDF downloads(0) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return