Source Journal of Chinese Scientific and Technical Papers
Included as T2 Level in the High-Quality Science and Technology Journals in the Field of Architectural Science
Core Journal of RCCSE
Included in the CAS Content Collection
Included in the JST China
Indexed in World Journal Clout Index (WJCI) Report
Wang Xinling, Kang Xiandong, Li Ke, Huang Weidong. FATIGUE DAMAGE MECHANISM OF HRBF500 RC BEAMS[J]. INDUSTRIAL CONSTRUCTION, 2013, 43(11): 45-48. doi: 10.13204/j.gyjz201311011
Citation: ZHENG Jie, LUO Surong, OU Xiang, WANG Shijie. Effects of Different Gelling Compositions on Drying Shrinkage Properties of 3D Printed Cement-Based Materials[J]. INDUSTRIAL CONSTRUCTION, 2023, 53(10): 151-156,28. doi: 10.13204/j.gyjzG23021512

Effects of Different Gelling Compositions on Drying Shrinkage Properties of 3D Printed Cement-Based Materials

doi: 10.13204/j.gyjzG23021512
  • Received Date: 2023-02-15
    Available Online: 2023-12-18
  • In order to improve the drying shrinkage performance of 3D printed cement-based materials, two mineral admixtures of fly ash (FA) and mineral powder (S) were added to the 3D printed cement-based materials prepared by machine-made sand in the form of single admixture and compound admixture. Scanning electron microscope and mercury intrusion porosimetry were used to research the microstructure and pore structure of 3D printed cement-based materials. The test results showed that:in the case of single addition, lower activity of fly ash and mineral powder inhibited the development of strength, and the inhibition effect of fly ash in the X, direction was the strongest, which reduced the 28 d compressive strength and flexural strength by 41% and 23%, respectively. However, the skeleton filling effect and pozzolanic effect of mineral admixtures could improve the pore structure, reduce the connectivity between pores, reduce water consumption, and inhibit the drying shrinkage of 3D printed cement-based materials. With the same content of fly ash and mineral powder, the total porosity was reduced by 15.2% and 9.8%, and the most probable pore size was reduced by 43.2% and 16.5%. Test group with 30% fly ash and 20% mineral powder reduced the 28d drying shrinkage by 41% and 22%, respectively. When fly ash and mineral powder were paired together, compressive strength and flexural strength decreased by 27.5% and 13.9%, respectively, and the inhibition effect on drying shrinkage was between that of single admixture, reduced the 28 d drying shrinkage by 23%-25%.
  • [1]
    XIAO J, LYU Z, DUAN Z, et al. Study on preparation and mechanical properties of 3D printed concrete with different aggregate combinations[J/OL]. Journal of Building Engineering, 2022,51[2023-02-15]. https://doi.org/10.1016/j.jobe.2022.104282.
    [2]
    BUSWELLI R A, LEAL D, JONES S Z, et al. 3D printing using concrete extrusion:a roadmap for research[J]. Cement & Concrete Research, 2018,112:37-39.
    [3]
    PANDA B, RUAN S, UNHUER C, et al. Investigation of the properties of alkali-activated slag mixes involving the use of nanoclay and nucleation seeds for 3D printing[J/OL]. Composites Part B:Engineering, 2020,186[2023-02-15]. https://doi.org/10.1016/j.compositesb.2020.107826.
    [4]
    崔天龙, 王里, 马国伟, 等. HB-CSA与膨胀剂对3D打印混凝土收缩开裂性能的影响[J]. 材料导报, 2022, 36(2):76-82.
    [5]
    侯东伟. 混凝土自身与干燥收缩一体化及相关问题研究[D]. 北京:清华大学, 2010.
    [6]
    廖伟华, 陈金义. 西北大跨连续刚构施工期腹板开裂成因分析[J]. 公路, 2020, 65(11):183-188.
    [7]
    ZHANG H, XIAO J. Plastic shrinkage and cracking of 3D printed mortar with recycled sand[J/OL]. Construction and Building Materials, 2021, 302[2023-02-15]. https://doi.org/10.1016/j.conbuildmat.2021.124405.
    [8]
    MOELICH G M, KRUGER J, COMBRINCK R. Plastic shrinkage cracking in 3D printed concrete[J/OL]. Composites Part B:Engineering, 2020,200[2023-02-15]. https://doi.org/10.1016/j.compositesb.2020.108313.
    [9]
    胡红梅, 马保国. 混凝土矿物掺合料[M]. 北京:中国电力出版社, 2016.
    [10]
    张涛, 朱成. 水泥-硅灰/粉煤灰体系强度、收缩性能与微观结构研究[J]. 硅酸盐通报, 2022, 41(3):903-912.
    [11]
    LEE K M, LEE H K, LEE S H, et al. Autogenous shrinkage of concrete containing granulated blast-furnace slag[J]. Cement and Concrete Research, 2006, 36(7):1279-1285.
    [12]
    SHEN D, WANG W, LI Q, et al. Early-age behaviour and cracking potential of fly ash concrete under restrained condition[J].Magazine of Concrete Research, 2020, 72(5):246-261.
    [13]
    李维红, 常西栋, 王乾, 等. 矿物掺合料对3D打印水泥基材料性能的影响[J]. 硅酸盐通报, 2020, 39(10):3101-3107

    ,3114.
    [14]
    VOIGT T, MBELE J J, WANG K, et al. Using fly ash, clay, and fibers for simultaneous improvement of concrete green strength and consolidatability for slip-form pavement[J]. Journal of Materials in Civil Engineering, 2010, 22(2):196-206.
    [15]
    杨钱荣, 赵宗志, 肖建庄, 等.矿物掺合料与化学外加剂对3D打印砂浆性能的影响[J]. 建筑材料学报, 2021, 24(2):412-418.
    [16]
    中华人民共和国国家质量监督检验检验总局. 水泥胶砂流动度测定方法:GB/T 2419-2005[S]. 北京:中国标准出版社, 2005.
    [17]
    中华人民共和国住房和城乡建设部. 建筑砂浆基本性能试验方法标准:JGJ/T 70-2009[S]. 北京:中国建筑工业出版社, 2009.
    [18]
    赵联桢. 矿物掺合料对混凝土早期收缩与力学性能的影响[D]. 南京:南京水利科学研究院, 2010.
    [19]
    WONGKEO W, THONGSANITGARN P, CHAIPANICH A. Compressive strength and drying shrinkage of fly ash-bottom ash-silica fume multi-blended cement mortars[J]. Materials & Design, 2012, 36:655-662.
    [20]
    ZHAO Y, GONG J, ZHAO S. Experimental study on shrinkage of HPC containing fly ash and ground granulated blast-furnace slag[J]. Construction and Building Materials, 2017,155:145-153.
    [21]
    YANG T, ZHU H, ZHANG Z. Influence of fly ash on the pore structure and shrinkage characteristics of metakaolin-based geopolymer pastes and mortars[J]. Construction and Building Materials, 2017, 153:284-293.
    [22]
    李顺凯. 水泥砂浆的干缩研究[D]. 南京:南京工业大学, 2004.
    [23]
    吴中伟. 混凝土科学技术近期发展方向的探讨[J]. 硅酸盐学报, 1979(3):82-90.
    [24]
    郑小青, 周泽友. 矿物掺和料与再生骨料对水泥强度和收缩性能的影响[J]. 硅酸盐通报, 2017, 36(1):191-196.
    [25]
    曾昊, 詹培敏, 李增, 等. 矿物掺合料对水泥基材料干燥收缩影响的研究进展[J]. 硅酸盐通报, 2020, 39(9):2714-2723.
  • Relative Articles

    [1]ZHANG Xue, MEN Jinjie, RONG Qiang, QIAO Dehao. Research on Prediction Models of Flexural Capacity of Corroded RC Beams Based on Ensemble Learning[J]. INDUSTRIAL CONSTRUCTION, 2024, 54(12): 128-137. doi: 10.3724/j.gyjzG24012901
    [2]LIU Bin, YANG Jiaqi, LIU Tianqiao, HU Lili, FENG Peng. Finite Element Analysis of Reinforced Concrete Beams Strengthened with Prestressed CFRP Plates with High Ductility[J]. INDUSTRIAL CONSTRUCTION, 2024, 54(6): 72-80. doi: 10.3724/j.gyjzG23111328
    [3]SONG Songke, DU Taoming, YANG Tao, ZHANG Qinghua. Coupling Effect Mechanism of Pavement Characteristics on Fatigue Damage of Orthotropic Steel Decks[J]. INDUSTRIAL CONSTRUCTION, 2024, 54(12): 229-237. doi: 10.3724/j.gyjzG21122303
    [4]HOU Chongchi, WANG Kaixuan, ZHENG Wenzhong, LIU Yuchen, ZHANG Lijia, LI Hongbin. Seismic Performance and Cumulative Damage Analysis of Concrete Columns Confined by High-Strength Stirrups[J]. INDUSTRIAL CONSTRUCTION, 2024, 54(3): 133-142. doi: 10.13204/j.gyjzG22111310
    [5]ZHU Linxuan, ZHANG Mingyi, CHEN Chaoran, ZHOU Zhijun, WANG Miaomiao. Prediction of Carbonation Depth of Reinforced Concrete Beams Under Cyclic Flexural Loads[J]. INDUSTRIAL CONSTRUCTION, 2022, 52(11): 139-143,212. doi: 10.13204/j.gyjzG21112513
    [6]LI Bin, LUO Yanyan, LI Xingbo. Seismic Performance Test and Finite Element Analysis of Monolithic Precast Shear Wall with Partially-Connected Vertical Distributed Steel Bars[J]. INDUSTRIAL CONSTRUCTION, 2022, 52(5): 51-59,23. doi: 10.13204/j.gyjzG21040601
    [7]HU Wenhao, GUO Rui, REN Yu. Study on the Flexural Capacity of RC Beams Strengthened with FRP Grids Based on the Bond-Slip Cohesive Model[J]. INDUSTRIAL CONSTRUCTION, 2022, 52(3): 216-226. doi: 10.13204/j.gyjzG21062512
    [8]CUI Honghuan, HE Jingyun, ZHANG Zhenhuan, YANG Xingran, WANG Xiaojing. A FREEZE-THAW DAMAGE MODEL OF CEMENT-SOLIDIFIED SOIL IN SEASONAL FROZEN SOIL ZONES[J]. INDUSTRIAL CONSTRUCTION, 2021, 51(5): 158-163. doi: 10.13204/j.gyjzG20072406
    [9]GAO Ziqi, ZHANG Jintao, ZHANG Hao, HAO Han, GUO Rui. FINITE ELEMENT ANALYSIS OF FLEXURAL BEHAVIOR OF DAMAGED RC BEAMS REINFORCED BY FRP[J]. INDUSTRIAL CONSTRUCTION, 2021, 51(5): 44-50,43. doi: 10.13204/j.gyjzG20110321
    [10]Zhu Chenfei, Liu Xiaojun, Li Wenzhe, Wu Yonggen, Liu Qingtao. STUDY OF FREEZE-THAW DURABILITY AND DAMAGE MODEL OFHYBRID FIBER CONCRETE[J]. INDUSTRIAL CONSTRUCTION, 2015, 45(2): 10-14. doi: 10.13204/j.gyjz201502003
    [11]Wang Zheng, Shi Qingxuan. COMPARATIVE ANANLYSIS OF SHEAR CAPACITY FOR REINFORCED CONCRETE BEAMS[J]. INDUSTRIAL CONSTRUCTION, 2013, 43(7): 105-109,138. doi: 10.13204/j.gyjz201307024
    [12]Wang Yutian, Zhang Wei, Jiang Fuxiang. EXPERIMENT ON THE BENDING PERFORMANCE OF CFRP REINFORCED PRE-DAMAGED REINFORCED CONCRETE BEAM UNDER SEAWATER ENVIRONMENT[J]. INDUSTRIAL CONSTRUCTION, 2013, 43(2): 99-103. doi: 10.13204/j.gyjz201302020
    [13]Jia Jinqing, Zhang Lihua, Meng Gang. CALCULATION METHOD FOR DAMAGE INDEX OF RC BEAM UNDER FATIGUE LOADING[J]. INDUSTRIAL CONSTRUCTION, 2012, 42(8): 54-58. doi: 10.13204/j.gyjz201208012
    [14]Liao Yanfen, Qi Yaqing, Ma Xiaoqian. NONLINEAR FINITE ELEMENT ANALYSIS OF REINFORCED CONCRETE BEAMS IN FIRE[J]. INDUSTRIAL CONSTRUCTION, 2011, 41(7): 31-37. doi: 10.13204/j.gyjz201107007
    [15]Wang Xinling, Chen Qingping, Du Lin. EXPERIMENTAL RESEARCH ON HRBF500 HIGH STRENGTH RC BEAMS FOR HIGH SPEED RAILWAY UNDER FATIGUE LOADING[J]. INDUSTRIAL CONSTRUCTION, 2010, 40(11): 18-21,26. doi: 10.13204/j.gyjz201011006
    [16]Jiang Chaowen, Zhang Jiwen. NON-LINEAR ANALYSIS OF CONCRETE BEAM-COLUMN ASSEMBLIES REINFORCED WITH FINE GRAINED HIGH STRENGTH STEEL BARS[J]. INDUSTRIAL CONSTRUCTION, 2009, 39(11): 40-44. doi: 10.13204/j.gyjz200911010
    [17]Zhao Yong, Wang Xiaofeng, Su Xiaozu, Cheng Zhijun. EXPERIMENTAL RESEARCH ON THE EFFECTS OF SURFACE REINFORCEMENT ON CRACK SPACING AND WIDTH OF REINFORCED CONCRETE BEAMS[J]. INDUSTRIAL CONSTRUCTION, 2009, 39(11): 29-32. doi: 10.13204/j.gyjz200911008
    [18]Hu Ling, Yang Yongxin, Wang Quanfeng, Xu Yuye, Wang Jiangen. EXPERIMENTAL STUDY ON BOND ANCHORAGE PROPERTIES OF HRBF500 STEEL BARS IN CONCRETE[J]. INDUSTRIAL CONSTRUCTION, 2009, 39(11): 13-16,44. doi: 10.13204/j.gyjz200911004
    [19]Liu Ronggui, Fu Kai, Yan Tingcheng. THE FATIGUE PROPERTIES OF PRE-STRESSED CONCRETE STRUCTURE UNDER THE CONDITIONS OF FREEZE-THAW CYCLE[J]. INDUSTRIAL CONSTRUCTION, 2008, 38(11): 75-78. doi: 10.13204/j.gyjz200811018
    [20]Ouyang Yu, Wang Peng, Zhang Yunchao. CALCULATION AND ANALYSIS OF FLEXURAL AND SHEAR CAPACITY OF RC BEAMS STRENGTHENED WITH BFRP SHEETS[J]. INDUSTRIAL CONSTRUCTION, 2007, 37(6): 24-27. doi: 10.13204/j.gyjz200706007
  • Created with Highcharts 5.0.7Amount of accessChart context menuAbstract Views, HTML Views, PDF Downloads StatisticsAbstract ViewsHTML ViewsPDF Downloads2024-042024-052024-062024-072024-082024-092024-102024-112024-122025-012025-022025-0302.557.51012.515
    Created with Highcharts 5.0.7Chart context menuAccess Class DistributionFULLTEXT: 6.9 %FULLTEXT: 6.9 %META: 88.8 %META: 88.8 %PDF: 4.4 %PDF: 4.4 %FULLTEXTMETAPDF
    Created with Highcharts 5.0.7Chart context menuAccess Area Distribution其他: 5.3 %其他: 5.3 %China: 0.6 %China: 0.6 %Taiwan, China: 1.2 %Taiwan, China: 1.2 %[]: 1.6 %[]: 1.6 %上海: 3.4 %上海: 3.4 %东莞: 1.6 %东莞: 1.6 %佛山: 0.3 %佛山: 0.3 %保定: 0.3 %保定: 0.3 %兰州: 0.9 %兰州: 0.9 %北京: 14.7 %北京: 14.7 %南京: 3.1 %南京: 3.1 %南充: 0.3 %南充: 0.3 %南宁: 0.6 %南宁: 0.6 %南昌: 0.6 %南昌: 0.6 %南通: 0.3 %南通: 0.3 %厦门: 0.6 %厦门: 0.6 %台州: 0.3 %台州: 0.3 %合肥: 3.1 %合肥: 3.1 %哈尔滨: 0.3 %哈尔滨: 0.3 %嘉兴: 0.3 %嘉兴: 0.3 %墨尔本: 0.3 %墨尔本: 0.3 %大连: 1.9 %大连: 1.9 %天津: 1.6 %天津: 1.6 %太原: 0.3 %太原: 0.3 %宁波: 0.6 %宁波: 0.6 %宜昌: 0.3 %宜昌: 0.3 %广州: 2.5 %广州: 2.5 %廊坊: 0.3 %廊坊: 0.3 %延安: 0.3 %延安: 0.3 %张家口: 1.9 %张家口: 1.9 %成都: 1.2 %成都: 1.2 %昆明: 0.3 %昆明: 0.3 %朝阳: 0.6 %朝阳: 0.6 %杭州: 3.4 %杭州: 3.4 %武汉: 3.4 %武汉: 3.4 %江门: 0.3 %江门: 0.3 %沈阳: 1.2 %沈阳: 1.2 %洛阳: 0.6 %洛阳: 0.6 %济南: 0.3 %济南: 0.3 %深圳: 0.3 %深圳: 0.3 %温州: 0.9 %温州: 0.9 %漯河: 0.3 %漯河: 0.3 %潍坊: 0.3 %潍坊: 0.3 %焦作: 0.3 %焦作: 0.3 %石家庄: 1.6 %石家庄: 1.6 %福州: 1.6 %福州: 1.6 %绵阳: 0.6 %绵阳: 0.6 %芒廷维尤: 11.6 %芒廷维尤: 11.6 %芝加哥: 2.5 %芝加哥: 2.5 %苏州: 0.3 %苏州: 0.3 %英国: 0.6 %英国: 0.6 %蚌埠: 0.3 %蚌埠: 0.3 %衡水: 0.9 %衡水: 0.9 %西宁: 2.2 %西宁: 2.2 %西安: 2.5 %西安: 2.5 %诺沃克: 0.3 %诺沃克: 0.3 %贵阳: 1.2 %贵阳: 1.2 %运城: 3.7 %运城: 3.7 %邯郸: 0.3 %邯郸: 0.3 %郑州: 1.6 %郑州: 1.6 %重庆: 1.6 %重庆: 1.6 %铁岭: 0.3 %铁岭: 0.3 %长沙: 0.9 %长沙: 0.9 %雅安: 0.9 %雅安: 0.9 %青岛: 0.3 %青岛: 0.3 %首尔: 0.6 %首尔: 0.6 %其他ChinaTaiwan, China[]上海东莞佛山保定兰州北京南京南充南宁南昌南通厦门台州合肥哈尔滨嘉兴墨尔本大连天津太原宁波宜昌广州廊坊延安张家口成都昆明朝阳杭州武汉江门沈阳洛阳济南深圳温州漯河潍坊焦作石家庄福州绵阳芒廷维尤芝加哥苏州英国蚌埠衡水西宁西安诺沃克贵阳运城邯郸郑州重庆铁岭长沙雅安青岛首尔

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (99) PDF downloads(1) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return