Source Journal of Chinese Scientific and Technical Papers
Included as T2 Level in the High-Quality Science and Technology Journals in the Field of Architectural Science
Core Journal of RCCSE
Included in the CAS Content Collection
Included in the JST China
Indexed in World Journal Clout Index (WJCI) Report
ZHANG Ailin, LIU Jie, JIANG Ziqin, GUO Kang, SU Shijia. Seismic Performance Evaluation of Steel Frame-Support Structures Embedded with Double-Stage Prefabricated Buckling-Restrained Braces[J]. INDUSTRIAL CONSTRUCTION, 2023, 53(9): 54-61. doi: 10.13204/j.gyjzG23020102
Citation: ZHANG Ailin, LIU Jie, JIANG Ziqin, GUO Kang, SU Shijia. Seismic Performance Evaluation of Steel Frame-Support Structures Embedded with Double-Stage Prefabricated Buckling-Restrained Braces[J]. INDUSTRIAL CONSTRUCTION, 2023, 53(9): 54-61. doi: 10.13204/j.gyjzG23020102

Seismic Performance Evaluation of Steel Frame-Support Structures Embedded with Double-Stage Prefabricated Buckling-Restrained Braces

doi: 10.13204/j.gyjzG23020102
  • Received Date: 2023-02-01
    Available Online: 2023-11-08
  • In order to study the influence of the new double-yield-point prefabricated buckling-restrained braces with replaceable core on the seismic performance of the prefabricated steel frame-support structure, firstly the finite element software Perform-3D was used to establish the finite element models of ordinary braces, buckling-restrained braces and new double-yield-point prefabricated buckling-restrained braces with replaceable core and verified the accuracy of the modeling method. Then, on this basis, a finite element model of steel frame-support structure embedded with new double-yield-point buckling-restrained braces with replaceable core was established, and the seismic performances of ordinary steel frame structure, steel frame-ordinary braces structure, steel frame-buckling-restrained braces structure, and steel frame-support structure embedded with new double-yield-point braces were studied by elastoplastic time-history analysis method. The analysis results show that Perform-3D could accurately simulate ordinary steel braces, ordinary buckling-restrained braces and new double-yield-point prefabricated buckling-restrained braces with replaceable core. The steel frame-support structure embedded with the new double-yield-point prefabricated buckling-restrained braces is better than other structures in terms of the maximum interlayer displacement angle and the top layer displacement of the structure and the base shear force. The new double-yield-point prefabricated buckling-restrained braces with replaceable core play an important role under the action of earthquake, mainly through the new double-yield-point prefabricated buckling-restrained braces with replaceable core to consume energy. It indicates that the steel frame-support structure embedded with the new double-yield-point prefabricated buckling-restrained braces with replaceable core shows a good seismic performance.
  • [1]
    魏丽红.房屋建筑结构抗震设计分析[J].中华民居(下旬刊),2014(5):58.
    [2]
    周福霖.工程结构减震控制[M].北京:地震出版社,1997.
    [3]
    饶建兵,刘林. 防屈曲支撑在加固钢筋混凝土框架中的应用[J]. 施工技术, 2014, 43(增刊1):131-132.
    [4]
    YOSHINO T, KARINO Y. Experimental study on shear wall with braces:part 2[C]//Architectural Institute of Japan.Tokyo:Japan:1971.
    [5]
    KIMURA K, YOSHIOKA K, TAKEDA T, et al. Tests on braces encased by mortar in-filled steel tubes[C]//Structural Engineering Section. Tokyo, Japan:1976.
    [6]
    INOUE K, SAWAISUMI S. Bracing design criterion of the reinforced concrete panel including unbonded steel diagonal braces[J]. Journal of Structural and Construction Engineering, 1992(432):41-49.
    [7]
    蔡克铨,黄彦智,翁崇兴. 双管式挫屈束制(屈曲约束)支撑之耐震行为与应用[J]. 建筑钢结构进展, 2005(3):1-8.
    [8]
    周云,钱洪涛,褚洪民,等.新型防屈曲耗能支撑设计原理与性能研究[J].土木工程学报,2009,42(4):64-71.
    [9]
    郭彦林,王小安,朱博莉,等.四角钢组合约束型防屈曲支撑的轴压试验研究[J].土木工程学报,2017,50(4):1-12

    ,115.
    [10]
    李国强,郭小康,孙飞飞,等. 屈曲约束支撑混凝土锚固节点力学性能试验研究[J]. 建筑结构学报,2012,33(3):89-95.
    [11]
    潘鹏,邓开来,脊晓光,等. GFRP-钢屈曲约束支撑力学性能试验研究[J]. 土木工程学报,2014,47(12):1-8.
    [12]
    万金国,杨凡,李文峰,等. 双屈服点免断裂屈曲约束支撑性能试验与数值模拟[J]. 建筑结构, 2013, 43(17):105-108.
    [13]
    韩强,贾振雷,王晓强,等.内嵌碟簧型自复位防屈曲支撑性能试验及其恢复力模型研究[J].工程力学,2018,35(6):144-150

    ,190.
    [14]
    胡宝琳,徐庆."类十字"双阶屈服屈曲约束支撑理论研究及数值分析[J].建筑钢结构进展,2022,24(1):98-107.
    [15]
    ZHANG A L, WANG H W, JIANG Z Q.Numerical simulation analysis of double yield points assembled buckling-restrained brace with replaceable inner core[J].Structures,2022(35):1278-1294.
    [16]
    胡大柱,李国强,孙飞飞,等.屈曲约束支撑铰接框架足尺模型模拟地震振动台试验[J].土木工程学报,2010,43(增刊1):520-525.
    [17]
    吴克川,陶忠,潘文,等.不同刚度比下防屈曲支撑钢筋混凝土框架抗震性能试验研究[J].建筑结构学报,2021,42(12):43-54.
    [18]
    MANSOUR N, CHRISTOPOULOS C, TREMBLAY R. Experimental validation of replaceable shear links for eccentrically braced steel[J]. Frames Journal of Structural Engineering, 2011, 137(10):1141-1152.
    [19]
    胡丹,周臻,苗建义,等. 自复位摩擦耗能支撑框架的抗震性能分析[J]. 土木工程与管理学报, 2014(3):28-33.
    [20]
    吴徽,张艳霞,张国伟,等. 防屈曲支撑作为可替换耗能元件抗震性能试验研究[J]. 土木工程学报,2013,46(11):30-36.
    [21]
    邱灿星,杜修力. 一种抗震性能化设计方法及在防屈曲支撑钢框架结构中的应用[J]. 工程力学, 2022, 39(11):63-72.
    [22]
    SHABACK B, BROWN T. Behaviour of square hollow structural steel braces with end connections under reversed cyclic axial loading[J]. Canadian Journal of Civil Engineering, 2003, 30(4):745-753.
    [23]
    中华人民共和国住房和城乡建设部. 建筑抗震设计规范:GB 50011-2010[S]. 2016版. 北京:中国建筑工业出版社, 2016.
    [24]
    Pacific Earthquake Engineering Research Center. PEER ground motion database[EB/OL].(2022-12-10)[2022-12-10]. https://ngawest2.berkeley.edu/.
  • Relative Articles

    [1]LIU Chengqing, XU Dibing, ZHANG Huaxin. Seismic Strengthening Design and Analysis of a Boiler Steel Frame[J]. INDUSTRIAL CONSTRUCTION, 2024, 54(3): 237-245. doi: 10.13204/j.gyjzG22050603
    [2]WANG Chunsen, LI Ruisong, XING Min, ZHUANG Liangdong, NIE Xin, ZOU Yan. Seismic Performance Analysis of Steel-Concrete Composite Structural System for Rail Transit Co-Construction Projects[J]. INDUSTRIAL CONSTRUCTION, 2024, 54(1): 96-101. doi: 10.3724/j.gyjzG23082210
    [3]LI Ran, SHU Ganping, HU Bo, CHEN Shitong. Experimental Research on Seismic Performance of Pin-Connected Steel Frame Structures with Different Braces[J]. INDUSTRIAL CONSTRUCTION, 2023, 53(11): 168-174. doi: 10.13204/j.gyjzG21082504
    [4]WU Junlin, YANG Hui, GUO Zhengxing. Numerical Analysis of Seismic Performance of Local Post-Tensioned Prestressed Assembled Concrete Frame Beam-Column Joints[J]. INDUSTRIAL CONSTRUCTION, 2023, 53(3): 29-34,28. doi: 10.13204/j.gyjzG22081301
    [5]YANG Xiaohua, ZHANG Qian, WU Senkun, FENG Jian, CAI Jianguo. Seismic Performance Analysis of Beam-Column Connections of Prefabricated Fiber Modified Concrete Frames[J]. INDUSTRIAL CONSTRUCTION, 2023, 53(4): 102-107,147. doi: 10.13204/j.gyjzG20122208
    [6]ZHANG Ailin, YANG Shuo, JIANG Ziqin, ZHANG Wenying, LIU Jie, YANG Xiaofeng. Seismic Fragility Analysis of Steel Frame Structure with Lateral Resistance Energy-Consuming Device[J]. INDUSTRIAL CONSTRUCTION, 2023, 53(5): 101-108. doi: 10.13204/j.gyjzG21122104
    [7]FAN Chunlei, BAO Xianbo, HAO Jiping, ZHANG Haibin, ZHONG Weihui. Research on Design Method and Seismic Performance of Diamond Braced Frame Structure[J]. INDUSTRIAL CONSTRUCTION, 2022, 52(7): 86-92,65. doi: 10.13204/j.gyjzG21042714
    [8]GAO Peinan, DENG Yang, LI Aiqun, LU Fengyong. REVIEW ON SEISMIC PERFORMANCE OF CONNECTION JOINTS OF PREFABRICATED CONCRETE FRAME STRUCTURES[J]. INDUSTRIAL CONSTRUCTION, 2021, 51(2): 171-185,152. doi: 10.13204/j.gyjzG20040805
    [9]YU Hongran, WANG Yan, AN Qi. SEISMIC PERFORMANCE ANALYSIS OF ANCHORING PREFABRICATED WALL-BEAM JOINT OF STEEL TUBE BUNDLE COMPOSITE SHEAR WALL STRUCTURE[J]. INDUSTRIAL CONSTRUCTION, 2021, 51(6): 84-94. doi: 10.13204/j.gyjzG20100401
    [10]XIE, Qin. EFFECT OF STIFFNESS RATIO ON THE SEISMIC BEHAVIOR OF BRB-PREFABRICATED CONCRETE FRAME DUAL SYSTEM[J]. INDUSTRIAL CONSTRUCTION, 2020, 50(1): 28-33. doi: 10.13204/j.gyjz202001006
    [11]Ni Zhen, Ma Jing, Liu Xuechun, Zhang Ailin. STUDY ON SEISMIC PERFORMANCE OF MODULAR PREFABRICATED STEEL FRAME[J]. INDUSTRIAL CONSTRUCTION, 2014, 44(08): 19-22.
    [12]Wang Chenggang, Hu Bo, Liu Bingkang, Chen Jian. PSEUDO-DYNAMIC EXPERIMENTAL AND ANALYTICAL STUDY OF TWO-STORY RECYCLED AGGREGATE CONCRETE FRAME[J]. INDUSTRIAL CONSTRUCTION, 2013, 43(10): 50-54,90. doi: 10.13204/j.gyjz201310012
    [13]Xian Yaoqiang, Liu Boquan, Ding Jiangshu. SEISMIC RESPONSE OF A RUNG-SHAPE LONG-SPAN TENSILE STRUCTURE (Ⅰ)[J]. INDUSTRIAL CONSTRUCTION, 2011, 41(4): 112-118. doi: 10.13204/j.gyjz201104024
    [14]Li Ke, Chen Guoping, Tang Lan. ANALYSIS OF SEISMIC BEHAVIORS OF THE MASONRY-CONCRETE TUBE COMPOSITE STRUCTURE[J]. INDUSTRIAL CONSTRUCTION, 2011, 41(4): 34-37. doi: 10.13204/j.gyjz201104008
    [15]Zhou Nannan, Wang Lai, Wang Guobing, Yang Ning. NONLINEAR FINITE ELEMENT ANALYSIS OF SEISMIC BEHAVIOR OF SEMI-RIGID CONNECTION STEEL FRAME[J]. INDUSTRIAL CONSTRUCTION, 2009, 39(3): 112-115,85. doi: 10.13204/j.gyjz200903029
    [16]Liu Jingbo, Liu Yangbing, Guo Bing, Yang Jianguo. PARAMETER ANALYSIS OF SEISMIC BEHAVIOR OF STEEL-CONCRETE COMPOSITE FRAME STRUCTURES[J]. INDUSTRIAL CONSTRUCTION, 2009, 39(8): 96-100. doi: 10.13204/j.gyjz200908023
    [17]Ouyang Yu, Zhang Wenjie. ANALYSIS OF THE SEISMIC EFFECTS FOR THE SEISMIC RETROFIT OF A CONCRETE FRAME WITH BUCKLING-RESTRAINED BRACES[J]. INDUSTRIAL CONSTRUCTION, 2009, 39(11): 118-121. doi: 10.13204/j.gyjz200911027
    [18]Peng Guanshou, Gao Xuanneng, Chen Minghua. EFFECTS OF LAYOUT OF BRACING ON LATERAL STIFFNESS OF STEEL FRAMES[J]. INDUSTRIAL CONSTRUCTION, 2008, 38(5): 83-87,70. doi: 10.13204/j.gyjz200805020
    [19]Huang Yi, Wang Yuanqing, Chen Hong, Shi Yongjiu. ANALYSIS OF ASEISMIC PROPERTIES OF LIGHT-WEIGHT STEEL MULTI-STOREY STRUCTURE[J]. INDUSTRIAL CONSTRUCTION, 2006, 36(12): 73-75. doi: 10.13204/j.gyjz200612020
    [20]Chen Lin, Zhou Yun, Zhang Yaochun. INFLUENCE OF INPUTTING DIMENSIONS OF EARTHQUAKE WAVES AND DAMPING RATIO ON SEISMIC RESPONSE TIME-HISTORY ANALYSIS OF MEGA STEEL FRAMES[J]. INDUSTRIAL CONSTRUCTION, 2004, 34(5): 67-69. doi: 10.13204/j.gyjz200405021
  • Cited by

    Periodical cited type(3)

    1. 乔光华,程远兵,郭子龙,戚福周. 装配式钢结构全栓接刚节点的抗震性能分析. 兵器材料科学与工程. 2025(01): 64-69 .
    2. 姚运. 装配式钢结构梁柱节点连接设计优化研究. 中国建筑金属结构. 2024(03): 131-133 .
    3. 姜子钦,王同宽,张文莹,韩伟,庄作松. 一种装配式自复位钢支撑结构体系的抗震性能研究. 钢结构(中英文). 2024(12): 29-37 .

    Other cited types(2)

  • Created with Highcharts 5.0.7Amount of accessChart context menuAbstract Views, HTML Views, PDF Downloads StatisticsAbstract ViewsHTML ViewsPDF Downloads2024-042024-052024-062024-072024-082024-092024-102024-112024-122025-012025-022025-03051015
    Created with Highcharts 5.0.7Chart context menuAccess Class DistributionFULLTEXT: 17.3 %FULLTEXT: 17.3 %META: 79.9 %META: 79.9 %PDF: 2.8 %PDF: 2.8 %FULLTEXTMETAPDF
    Created with Highcharts 5.0.7Chart context menuAccess Area Distribution其他: 10.1 %其他: 10.1 %[]: 0.6 %[]: 0.6 %上海: 2.2 %上海: 2.2 %东莞: 1.1 %东莞: 1.1 %北京: 4.5 %北京: 4.5 %南京: 1.7 %南京: 1.7 %台州: 1.7 %台州: 1.7 %嘉兴: 1.7 %嘉兴: 1.7 %大庆: 0.6 %大庆: 0.6 %天津: 0.6 %天津: 0.6 %宁波: 0.6 %宁波: 0.6 %宿迁: 0.6 %宿迁: 0.6 %常州: 1.1 %常州: 1.1 %常德: 2.8 %常德: 2.8 %广州: 1.1 %广州: 1.1 %延安: 1.1 %延安: 1.1 %张家口: 1.1 %张家口: 1.1 %成都: 2.2 %成都: 2.2 %昆明: 0.6 %昆明: 0.6 %晋城: 0.6 %晋城: 0.6 %杭州: 1.7 %杭州: 1.7 %格兰特县: 0.6 %格兰特县: 0.6 %武汉: 3.4 %武汉: 3.4 %洛阳: 1.1 %洛阳: 1.1 %济南: 0.6 %济南: 0.6 %漯河: 3.4 %漯河: 3.4 %潍坊: 0.6 %潍坊: 0.6 %石家庄: 1.1 %石家庄: 1.1 %福州: 1.1 %福州: 1.1 %纽约: 1.1 %纽约: 1.1 %芒廷维尤: 20.1 %芒廷维尤: 20.1 %芝加哥: 1.7 %芝加哥: 1.7 %苏州: 1.1 %苏州: 1.1 %衡水: 0.6 %衡水: 0.6 %西宁: 18.4 %西宁: 18.4 %西安: 1.1 %西安: 1.1 %贵阳: 0.6 %贵阳: 0.6 %赤峰: 0.6 %赤峰: 0.6 %达州: 0.6 %达州: 0.6 %运城: 3.4 %运城: 3.4 %郑州: 0.6 %郑州: 0.6 %重庆: 0.6 %重庆: 0.6 %其他[]上海东莞北京南京台州嘉兴大庆天津宁波宿迁常州常德广州延安张家口成都昆明晋城杭州格兰特县武汉洛阳济南漯河潍坊石家庄福州纽约芒廷维尤芝加哥苏州衡水西宁西安贵阳赤峰达州运城郑州重庆

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (142) PDF downloads(5) Cited by(5)
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return