Source Journal of Chinese Scientific and Technical Papers
Included as T2 Level in the High-Quality Science and Technology Journals in the Field of Architectural Science
Core Journal of RCCSE
Included in the CAS Content Collection
Included in the JST China
Indexed in World Journal Clout Index (WJCI) Report
WANG Zhenxing, CONG Jun, ZHU Tong, ZHANG Lei, CHEN Wenqiang, GUO Jiantao, ZHANG Zhichao. Experimental Research on Short-Term Maximum Crack Width of Large-Diameter Reinforced Concrete Beams[J]. INDUSTRIAL CONSTRUCTION, 2024, 54(12): 121-127. doi: 10.13204/j.gyjzG23010304
Citation: WANG Zhenxing, CONG Jun, ZHU Tong, ZHANG Lei, CHEN Wenqiang, GUO Jiantao, ZHANG Zhichao. Experimental Research on Short-Term Maximum Crack Width of Large-Diameter Reinforced Concrete Beams[J]. INDUSTRIAL CONSTRUCTION, 2024, 54(12): 121-127. doi: 10.13204/j.gyjzG23010304

Experimental Research on Short-Term Maximum Crack Width of Large-Diameter Reinforced Concrete Beams

doi: 10.13204/j.gyjzG23010304
  • Received Date: 2023-01-03
    Available Online: 2025-01-04
  • Publish Date: 2024-12-20
  • In order to study the calculation method for short-term maximum crack width of HRB400 large diameter reinforced concrete beams under normal service limit states, the short-term maximum crack width of four groups of five beams under various loads was measured, and the effects of the arrangements of large-diameter steel rebars on the inside and outside and the spacing of stirrups on the short-term maximum crack width were analyzed. Based on the measured results, suggestions for revising the short-term maximum crack width formula in the Code for Design of Concrete Structures (GB/T 50010—2010) were proposed. The results showed that when the stirrup spacing was 100 or 200 mm, the average crack spacing was close to the stirrup spacing, and the arrangements of large diameter steel rebars on the outside were more effective in reducing the short-term maximum crack width, which was about 91.5% of that arranged on the inside. The short-term maximum crack width calculated according to the specifications GB 50010—2010 was significantly larger than the experimental values, and the short-term maximum crack width calculation formula considering the effects of stirrup spacing and high stress work of the steel rebars agreed well with the measured values.
  • [1]
    管东芝.梁端底筋锚入式预制梁柱连接节点抗震性能研究[D].南京:东南大学,2017.
    [2]
    李春雨.带可更换耗能连接的装配式混凝土框架抗震性能与设计方法研究[D].南京:东南大学,2020.
    [3]
    向鹏.大直径高强钢筋预制混凝土框架梁静力试验研究[D].沈阳:沈阳建筑大学,2019.
    [4]
    中华人民共和国住房和城乡建设部. 混凝土结构设计标准: GB/T 50010—2010[S].北京:中国建筑工业出版社,2024.
    [5]
    王新玲,白岩,朱俊涛.正常使用状态下600 MPa级钢筋混凝土梁受弯性能试验研究[J].工业建筑,2020,50(10):20-25.
    [6]
    路璐.细晶HRBF500钢筋混凝土轴心受拉构件裂缝性能试验研究[D].郑州:郑州大学,2011.
    [7]
    韩冲.高强钢筋混凝土构件裂缝宽度与钢筋应力关系试验研究[D].郑州:郑州大学,2020.
    [8]
    张鸣一.大直径配筋预制混凝土简支梁静力性能研究[D].沈阳:沈阳建筑大学,2019.
    [9]
    殷小溦,黄小坤,田春雨,等.配置大间距HRB500高强纵筋的混凝土叠合梁受弯性能试验研究[J].建筑结构学报,2016,37(5):291-296.
    [10]
    国家标准化管理委员会. 金属材料 拉伸试验 第1部分:室温试验方法:GB/T 228.1—2021[S].北京:中国标准出版社,2021.
    [11]
    中华人民共和国住房和城乡建设部. 混凝土结构试验方法标准: GB/T 50152—2012[S].北京:中国建筑工业出版社,2012.
    [12]
    姚贤华,管俊峰,刘霖艾,等.配置600 MPa高强钢筋的混凝土梁裂缝宽度试验研究[J].建筑结构学报,2021,42(6):169-181.
    [13]
    李志华,苏小卒,赵勇.箍筋对钢筋混凝土受弯构件裂缝的影响分析[J].重庆建筑大学学报,2007(6):53-56.
    [14]
    易伟建,杨晓,李琼.HRB500级钢筋混凝土梁裂缝与变形性能试验研究[J].建筑结构,2011,41(8):110-114.
    [15]
    周建民,王眺,陈飞,等.高强钢筋混凝土梁裂缝宽度的试验研究和分析[J].同济大学学报(自然科学版),2011,39(10):1420-1425,1499.
    [16]
    东南大学课题组.国内外相关规范关于钢筋混凝土构件裂缝宽度计算方法比较[R].南京:东南大学土木工程学院, 2008.
    [17]
    赵勇,王晓锋,程志军,等.高强钢筋混凝土梁短期裂缝计算方法评析[J].建筑结构学报,2011,32(1):50-57.
    [18]
    王小亮.高强钢筋混凝土梁受弯性能试验研究[D].天津:天津大学,2007.
  • Relative Articles

    [1]WANG Xinling, BAI Yan, ZHU Juntao. EXPERIMENTAL STUDY ON FLEXURAL PROPERTIES OF REINFORCED CONCRETE BEAMS WITH REBAR HRB600 UNDER SERVICE CONDITIONS[J]. INDUSTRIAL CONSTRUCTION, 2020, 50(10): 20-25. doi: 10.13204/j.gyjz201904280010
    [2]Li Longqi, Zhou Donghua, Xu Bin, Wang Peng. THE LARGEST DIAMETER OF STEEL BAR FOR CONTROLLING CRACK WIDTH OF REINFORCED CONCRETE MEMBERS[J]. INDUSTRIAL CONSTRUCTION, 2013, 43(12): 88-92. doi: 10.13204/j.gyjz201312016
    [3]Xu Gang, Liang Guilin, Wang Qing, Li Yunpan. COMPARISON OF THE SERVICEABILITY ANALYSIS BETWEEN THE PRESENT AND OLD CODES FOR DESIGN OF CONCRETE STRUCTURES[J]. INDUSTRIAL CONSTRUCTION, 2013, 43(1): 121-124,143. doi: 10.13204/j.gyjz201301027
    [4]Han Yan, Zhou A-li. SEISMIC PERFORMANCE ANALYSIS OF HRB400 HIGH-STRENGTH REINFORCED CONCRETE COLUMNS[J]. INDUSTRIAL CONSTRUCTION, 2012, 42(10): 58-62. doi: 10.13204/j.gyjz201210014
    [5]Yang Yongxin, Wang Jiangen, Wang Quanfeng. EXPERIMENTAL RESEARCH ON DEFORMATION OF REINFORCED CONCRETE BEAM WITH HRBF500 STEEL BARS[J]. INDUSTRIAL CONSTRUCTION, 2011, 41(7): 62-65. doi: 10.13204/j.gyjz201107014
    [6]Gao Ruiping, Qiu Hongxing, Hu Tao, Ding Zhenkun, Lan Zongjian. EXPERIMENTAL RESEARCH ON CRACK WIDTH OF HRB500 STEEL BARS RC BEAMS[J]. INDUSTRIAL CONSTRUCTION, 2010, 40(3): 66-70. doi: 10.13204/j.gyjz201003016
    [7]Xiao Hongju, Han Juhong, Zhang Leishun, Bi Suping. THE EXPERIMENTAL RESEARCH ON CRACK WIDTH ON HRB400 STEEL BARS REINFORCED CONCRETE BENDING BEAMS[J]. INDUSTRIAL CONSTRUCTION, 2007, 37(8): 51-54. doi: 10.13204/j.gyjz200708014
    [8]Zhang Wei-hui, Huang Ru, Li Xiao-qi, Wei Dong. A BRIEF DISCUSSION ON CONTROLLING OF REINFORCEMENTS DOSAGE IN STRUCTURE DESIGN[J]. INDUSTRIAL CONSTRUCTION, 2006, 36(7): 59-61,56. doi: 10.13204/j.gyjz200607015
    [9]Guo Honglei, Ding Dajun, Li Chengjiang. STUDY ON DETERMINATION OF RAFT THICKNESS OF PILE-RAFT FOUNDATION[J]. INDUSTRIAL CONSTRUCTION, 2005, 35(5): 28-32. doi: 10.13204/j.gyjz200505007
    [10]Li Meiyun, . THE EXPERIMENT AND ANALYSIS OF DEFORMATION OF HRB400 REINFORCED CONCRETE SIMPLY SUPPORTED BEAM[J]. INDUSTRIAL CONSTRUCTION, 2005, 35(3): 27-29. doi: 10.13204/j.gyjz200503011
    [11]Zhang Junzhi, Su Xiaozu. SYSTEM RELIABILITY ANALYSIS OF UNBONDED PARTIALLY PRESTRESSED CONCRETE BEAMS[J]. INDUSTRIAL CONSTRUCTION, 2004, 34(1): 36-38. doi: 10.13204/j.gyjz200401010
  • Created with Highcharts 5.0.7Amount of accessChart context menuAbstract Views, HTML Views, PDF Downloads StatisticsAbstract ViewsHTML ViewsPDF Downloads2024-092024-102024-112024-122025-012025-022025-032025-042025-052025-062025-072025-070510152025
    Created with Highcharts 5.0.7Chart context menuAccess Class DistributionFULLTEXT: 10.7 %FULLTEXT: 10.7 %META: 88.1 %META: 88.1 %PDF: 1.2 %PDF: 1.2 %FULLTEXTMETAPDF
    Created with Highcharts 5.0.7Chart context menuAccess Area Distribution其他: 75.0 %其他: 75.0 %南京: 1.2 %南京: 1.2 %嘉兴: 1.2 %嘉兴: 1.2 %宣城: 1.2 %宣城: 1.2 %常州: 1.2 %常州: 1.2 %张家口: 4.8 %张家口: 4.8 %扬州: 1.2 %扬州: 1.2 %漯河: 2.4 %漯河: 2.4 %芒廷维尤: 4.8 %芒廷维尤: 4.8 %西宁: 3.6 %西宁: 3.6 %西安: 1.2 %西安: 1.2 %运城: 2.4 %运城: 2.4 %其他南京嘉兴宣城常州张家口扬州漯河芒廷维尤西宁西安运城

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (73) PDF downloads(1) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return