Citation: | FAN Lidan, YANG Jie, YU Yongqiang, ZHANG Jiyun, TANG Jinzhao, SU Zhouhu. Mix Proportion Optimization and Microstructure Analysis for Geopolymer Grouting Material Based on Response Surface Methodology[J]. INDUSTRIAL CONSTRUCTION, 2023, 53(6): 194-201. doi: 10.13204/j.gyjzG22122706 |
[1] |
田中男, 张争奇, 李乃强, 等. 工业废渣地聚合物注浆材料组分及性能增强的研究进展[J]. 材料导报, 2020, 34(19): 19034-19042.
|
[2] |
BOUAISSI A, LI L Y, AL BAKRI A M M, et al. Mechanical properties and microstructure analysis of FA-GGBS-HMNS based geopolymer concrete [J]. Construction and Building Materials, 2019, 210: 198-209.
|
[3] |
杨达, 卢明阳, 宋迪, 等. 地质聚合物水泥的研究进展[J]. 材料导报, 2021, 35(增刊1): 644-649.
|
[4] |
张津津, 李博, 余闯, 等. 矿渣-粉煤灰基地聚合物固化砂土力学特性研究[J]. 岩土力学, 2022(9): 1-11.
|
[5] |
郭凌志, 周梅, 王丽娟, 等. 煤基固废地聚物注浆材料的制备及性能研究[J]. 建筑材料学报, 2022,25(10):1092-1100.
|
[6] |
MORSY M S, ALSAYED S H, AL-SALLOUM Y, et al. Effect of sodium silicate to sodium hydroxide ratios on strength and microstructure of fly ash geopolymer binder[J]. Arabian Journal for Science and Engineering, 2014, 39(6): 4333-4339.
|
[7] |
GHAFOORI N, NAJIMI M, RADKE B. Natural pozzolan-based geopolymers for sustainable construction[J/OL]. Environmental Earth Sciences, 2016, 75(14)[2022-12-17].https//:doi.org/10.1007/s12665-016-5898-5.
|
[8] |
TAGHVAYI H, BEHFARNIA K, KHALILI M, et al. The effect of alkali concentration and sodium silicate modulus on the properties of alkali-activated slag concrete [J]. Journal of Advanced Concrete Technology, 2018, 16(7): 293-305.
|
[9] |
JEROLD S, CHELLADURAI S, RAY A P, et al. Optimization of process parameters using response surface methodology: a review [J]. Materials Today: Proceedings, 2021, 37(2): 1301-1304.
|
[10] |
PULIGILLA S, MONDAL P. Role of slag in microstructural development and hardening of fly ash-slag geopolymer[J]. Cement and Concrete Research, 2013, 43: 70-80.
|
[11] |
XIE J H, WANG J J, RAO R, et al. Effects of combined usage of GGBS and fly ash on workability and mechanical properties of alkali activated geopolymer concrete with recycled aggregates[J]. Composites Part B: Engineering, 2019,164: 179-190.
|
[12] |
王爱国, 王星尧, 孙道胜, 等. 地质聚合物凝结硬化及其调节技术的研究进展[J]. 材料导报, 2021, 35(13): 5-14.
|
[13] |
MAKHLOUFI Z, CHETTIH M, BEDERINA M, et al. Effect of quaternary cementitious systems containing limestone, blast furnace slag and natural pozzolan on mechanical behavior of limestone mortars[J]. Construction and Building Materials, 2015, 95: 647-657.
|
[14] |
LUGA E, ATIS C D. Optimization of heat cured fly ash/slag blend geopolymer mortars designed by "Combined Design" method: Part 1[J]. Construction and Building Materials, 2018, 178: 393-404.
|
[15] |
李莉, 张赛, 何强,等. 响应面法在试验设计与优化中的应用[J]. 实验室研究与探索, 2015, 34(8): 41-45.
|
[16] |
洪旗, 史耀耀, 路丹妮, 等. 基于灰色关联分析和响应面法的复合材料缠绕成型多目标工艺参数优化[J]. 复合材料学报, 2019, 36(12): 2822-2832.
|
[17] |
BERNAL S A, MEJIA DE GUTIERREZ R, PEDRAZA A L, et al. Effect of binder content on the performance of alkali-activated slag concretes[J]. Cement and Concrete Research, 2011, 41(1): 1-8.
|
[18] |
许金余, 高原, 罗鑫. 地聚合物基快速修补材料的性能与应用[M]. 西安: 西北工业大学出版社, 2017.
|
[19] |
黄华, 郭梦雪, 张伟, 等. 粉煤灰-矿渣基地聚物混凝土力学性能与微观结构[J]. 哈尔滨工业大学学报, 2022, 54(3): 74-84.
|
[20] |
杨达, 庞来学, 宋迪, 等. 粉煤灰对碱激发矿渣/粉煤灰体系的作用机理研究[J]. 硅酸盐通报, 2021, 40(9): 3005-3011.
|