Source Journal of Chinese Scientific and Technical Papers
Included as T2 Level in the High-Quality Science and Technology Journals in the Field of Architectural Science
Core Journal of RCCSE
Included in the CAS Content Collection
Included in the JST China
Indexed in World Journal Clout Index (WJCI) Report
HOU Yufei, ZHENG Chuanlei, ZHAO Yadi, JIN Baohong. Effect of Sulfate Freeze-Thaw on Mechanical Properties of Self-Compacting Recycled Coarse Aggregate Concrete[J]. INDUSTRIAL CONSTRUCTION, 2023, 53(7): 189-198,6. doi: 10.13204/j.gyjzG22111001
Citation: HOU Yufei, ZHENG Chuanlei, ZHAO Yadi, JIN Baohong. Effect of Sulfate Freeze-Thaw on Mechanical Properties of Self-Compacting Recycled Coarse Aggregate Concrete[J]. INDUSTRIAL CONSTRUCTION, 2023, 53(7): 189-198,6. doi: 10.13204/j.gyjzG22111001

Effect of Sulfate Freeze-Thaw on Mechanical Properties of Self-Compacting Recycled Coarse Aggregate Concrete

doi: 10.13204/j.gyjzG22111001
  • Received Date: 2022-11-10
  • The effect of recycled coarse aggregate (RCA) replacement ratios, freeze-thaw environments and freeze-thaw cycles on the mechanical properties of self-compacting recycled coarse aggregate concrete (SCRCAC) were studied by rapid freeze-thaw cycle method. The results showed that when the RCA replacement ratios were the same, the compressive strength, splitting tensile strength and uniaxial compressive strength loss ratio of SCRCAC after being subjected to 125 freeze-thaw cycles were the smallest in the freeze-thaw environment of clear water, and the maximum in the 5% mass fraction MgSO4 solution freeze-thaw environment. Sulfate could inhibit freeze-thaw damage at the initial stage of freeze-thaw. At the late stage of freeze-thaw, the relation curves of compressive strength and freeze-thaw cycles of SCRCAC gradually spearated from that curves of ordinary concrete in different freeze-thaw environments and RCA replacement ratios. Based on that, a new relation between the splitting tensile force and the uniaxial compressive force was presented, better predicted the damage and deterioration law of SCRCAC after freeze-thawing of sulfate. The established strength prediction model showed that the model had high accuracy. Grey entropy correlation analysis showed that the effect of freeze-thaw cycles on compressive strength and splitting tensile strength was greater than that of RCA replacement ratios in the freeze-thaw environment of clear water, in the solution of 5% mass fraction of Na2SO4, and in the solution of 5% mass fraction of Na2SO4 and 5% mass fraction of MgSO4. However, contrary to the situation of the solution of 5% mass fraction of MgSO4. The effect of freeze-thaw cycles on the uniaxial compressive strength was larger than the RCA replacement ratio in clear water.
  • [1]
    于婧, 雷实满, 梁兴文, 等. 一种新型混杂钢纤维增强自密实混凝土的配合比设计方法[J]. 建筑材料学报, 2017, 20(4):611-615

    ,629.
    [2]
    JIHONG B, YUN Z, JIAN G, et al. Three-dimensional modeling of the distribution and orientation of steel fibers during the flow of self-compacting concrete[J]. Structural Concrete, 2019, 20(5):1-12.
    [3]
    ZHENG C, LI S, HOU Y, et al. Frost resistance of fiber-reinforced self-compacting recycled concrete[J]. Reviews on Advanced Materials Science, 2022, 61(1):711-725.
    [4]
    XIAO Q, LI Q, CAO Z, et al. The deterioration law of recycled concrete under the combined effects of freeze-thaw and sulfate attack[J]. Construction and Building Materials, 2019, 200:344-355.
    [5]
    XIAO Q, CAO Z, GUAN X, et al. Damage to recycled concrete with different aggregate substitution rates from the coupled action of freeze-thaw cycles and sulfate attack[J]. Construction and Building Materials, 2019, 221:74-83.
    [6]
    姜磊, 牛荻涛. 硫酸盐与冻融复合作用下混凝土劣化规律[J]. 中南大学学报(自然科学版), 2016, 47(9):3208-3216.
    [7]
    慕儒, 缪昌文, 刘加平, 等. 氯化钠、硫酸钠溶液对混凝土抗冻性的影响及其机理[J]. 硅酸盐学报, 2001(6):523-529.
    [8]
    王鲜星, 刘元珍, 赵雨, 等. 再生保温混凝土抗冻性能的细观研究[J]. 硅酸盐通报, 2021, 40(11):3601-3607.
    [9]
    孙晓红, 胡大琳, 张雷雷, 等. 考虑冻融和应力影响的混凝土构件碳化试验研究[J]. 硅酸盐通报, 2020, 39(4):1115-1125.
    [10]
    MILETIC S, ILIC M, OTOVIC S, et al. Phase composition changes due to ammonium-sulphate:attack on portland and portland fly ash cements[J]. Construction and Building Materials, 1999, 13(3):117-127.
    [11]
    金宝宏, 郑传磊, 侯玉飞, 等. 聚丙烯-钢纤维/再生粗骨料混凝土力学性能正交试验研究[J]. 功能材料, 2021, 52(12):12175-12183.
    [12]
    郭樟根, 陈晨, 范秉杰, 等. 再生粗细骨料混凝土基本力学性能试验研究[J]. 建筑结构学报, 2016, 37(增刊2):94-102.
    [13]
    孙呈凯, 金宝宏, 李家俊, 等. PVA纤维再生混凝土力学性能正交试验研究[J]. 广西大学学报(自然科学版), 2018, 43(4):1569-1575.
    [14]
    JIA P, LI L, ZHOU J, et al. Performance evolution of recycled aggregate concrete under the coupled effect of freeze-thaw cycles and sulfate attack[J/OL]. Applied Sciences, 2022, 12(14)[2022-11-10].https://doi.org/10.3390/app12146950.
    [15]
    LIU F, YOU Z, YANG X, et al. Macro-micro degradation process of fly ash concrete under alternation of freeze-thaw cycles subjected to sulfate and carbonation[J]. Construction and Building Materials, 2018, 181:369-380.
    [16]
    中华人民共和国住房和城乡建设部. 混凝土结构设计规范:GB 50010-2010[S].北京:中国建筑工业出版社,2010.
    [17]
    American Concrete Institute (ACI). Building code requirements for structural concrete and commentary:ACI318-95[S]. Detroit:ACI,1995.
    [18]
    郭樟根, 陈晨, 范秉杰, 等. 再生粗细骨料混凝土基本力学性能试验研究[J]. 建筑结构学报, 2016, 37(增刊2):94-102.
    [19]
    王晋浩, 郑传磊, 金宝宏, 等. 粉煤灰/不同骨料对纤维自密实再生混凝土力学性能影响[J]. 功能材料, 2022, 53(9):9209-9218.
    [20]
    郑传磊, 王晋浩, 金宝宏, 等. 多因素对自密实混凝土力学性能发展趋势的影响[J]. 功能材料, 2021, 52(12):12022-12029

    ,12035.
    [21]
    李旭平. 再生混凝土基本力学性能研究(I):单轴受压性能[J]. 建筑材料学报, 2007(5):598-603.
    [22]
    向星赟, 赵人达, 李福海, 等. 自密实再生混凝土的基本力学性能试验研究[J]. 西南交通大学学报, 2019, 54(2):359-365.
    [23]
    陈宗平, 徐金俊, 郑华海, 等. 再生混凝土基本力学性能试验及应力应变本构关系[J]. 建筑材料学报, 2013, 16(1):24-32.
    [24]
    胡波, 柳炳康, 王成刚. 再生混凝土基本力学性能研究[J]. 合肥工业大学学报(自然科学版), 2014, 37(1):87-90.
    [25]
    王晨霞, 张铎, 曹芙波, 等. 冻融循环后再生混凝土的力学性能及损伤模型研究[J]. 工业建筑, 2022, 52(5):199-207.
    [26]
    祝斯月, 陈拴发, 秦先涛, 等. 基于灰关联熵分析法的高粘改性沥青关键指标[J]. 材料科学与工程学报, 2014, 32(6):863-867.
  • Relative Articles

    [1]ZHAO Muzi, XU Chengyan, WANG Yuyin, GENG Yue, GONG Chao. Dilation Ratio and Modeling of Recycled Aggregate Concrete[J]. INDUSTRIAL CONSTRUCTION, 2023, 53(10): 143-150,82. doi: 10.13204/j.gyjzG23051513
    [2]WANG Hai-bo. A Prediction Model for Bond Strength Between Concrete and Steel Bars Based on Bayesian Neural Networks[J]. INDUSTRIAL CONSTRUCTION, 2022, 52(9): 87-93. doi: 10.13204/j.gyjzg22031516
    [3]WANG Yan, XU Shanhua, LI Anbang. Research on Restoring Force Model of Freeze-Thaw Damaged Reinforced Concrete Columns[J]. INDUSTRIAL CONSTRUCTION, 2022, 52(8): 97-102. doi: 10.13204/j.gyjzG21101322
    [4]WANG Chenxia, ZHANG Duo, CAO Fubo, WU Yaxuan, YE Chang, LI Lan. Research on Mechanical Properties and Damage of Recycled Concrete After Being Subjected to Freeze-Thaw Cycles[J]. INDUSTRIAL CONSTRUCTION, 2022, 52(5): 199-207. doi: 10.13204/j.gyjzG20091704
    [5]CUI Honghuan, HE Jingyun, ZHANG Zhenhuan, YANG Xingran, WANG Xiaojing. A FREEZE-THAW DAMAGE MODEL OF CEMENT-SOLIDIFIED SOIL IN SEASONAL FROZEN SOIL ZONES[J]. INDUSTRIAL CONSTRUCTION, 2021, 51(5): 158-163. doi: 10.13204/j.gyjzG20072406
    [6]WU Youde, MENG Xinmiao, FENG Peng, LIN Hongwei. MATHEMATICAL MODEL FOR THE AXIAL COMPRESSIVE STRENGTH OF MOSO BAMBOO BASED ON THE MACRO AND MESO CHARACTERISTICS[J]. INDUSTRIAL CONSTRUCTION, 2020, 50(4): 71-75. doi: 10.13204/j.gyjz202004013
    [7]LIU Yuxia, LU Jingzhou, TIAN Feixiang, LI Yunkai, LI Haibo. RESEARCH ON THE DAMAGE OF GEOPOLYMER CONCRETE UNDER THE ACTION OF SALTWATER AND FREEZE-THAW[J]. INDUSTRIAL CONSTRUCTION, 2020, 50(4): 76-81. doi: 10.13204/j.gyjz202004014
    [8]HUANG, Junbo, NING, Baokuan. ANALYSIS OF FREEZE-THAW DETERIORATION AND DAMAGE CHARACTERISTICS OF EXISTING CRACKED CONCRETE[J]. INDUSTRIAL CONSTRUCTION, 2020, 50(1): 142-147. doi: 10.13204/j.gyjz202001023
    [11]Xu Shanhua, Yang Long, Xu Yingzhe. EXPERIMENTAL RESEARCH ON BOND BEHAVIORS BETWEEN PLAIN STEEL BARS AND CONCRETE AFTER FREEZING AND THAWING CYCLES[J]. INDUSTRIAL CONSTRUCTION, 2015, 45(2): 23-26. doi: 10.13204/j.gyjz201502006
    [12]Chen Zongping, Zhan Donghui, Xu Jinjun. RESEARCH ON MECHANICAL PROPERTIES OF RECYCLED CONCRETE USING DIFFERENT RECYCLED COARSE AGGREGATE REPLACEMENT[J]. INDUSTRIAL CONSTRUCTION, 2015, 45(1): 130-135. doi: 10.13204/j.gyjz201501026
    [13]Zhu Chenfei, Liu Xiaojun, Li Wenzhe, Wu Yonggen, Liu Qingtao. STUDY OF FREEZE-THAW DURABILITY AND DAMAGE MODEL OFHYBRID FIBER CONCRETE[J]. INDUSTRIAL CONSTRUCTION, 2015, 45(2): 10-14. doi: 10.13204/j.gyjz201502003
    [14]Zhang Yiduo, Xu Lulu, Liu Ronggui, Liu Tao. STUDY ON DAMAGE OF PRE-STRESSED CONCRETE BEAMS IN THE ALTERNATIVE ACTION OF FREEZE-THAWING AND FATIGUE LOAD[J]. INDUSTRIAL CONSTRUCTION, 2013, 43(4): 57-61. doi: 10.13204/j.gyjz201304012
    [15]Liu Ronggui, Liu Tao, Zhang Yiduo, Gao Song, Chen Yu. RESEARCH ON A MODEL OF THE INFLUENCE COEFFICIENT FOR PRE-FREEZE-THAWING FATIGUE LIFE[J]. INDUSTRIAL CONSTRUCTION, 2010, 40(6): 5-8,20. doi: 10.13204/j.gyjz201006002
    [16]Li Feng, Wei Lijin, Li Chao. DISCUSSION ON CONVERSION RELATION OF WIND LOAD BETWEEN CHINESE AND AMERICAN STANDARDS[J]. INDUSTRIAL CONSTRUCTION, 2009, 39(9): 114-116. doi: 10.13204/j.gyjz200909025
    [17]Shao Yongjian. STRENGTH INDEX AND STATISTICAL PARAMETER OF LIGHTWEIGHT AGGREGATE CONCRETE[J]. INDUSTRIAL CONSTRUCTION, 2007, 37(8): 82-85. doi: 10.13204/j.gyjz200708021
    [18]Liu Zhiyong, Ma Liguo. DURABILITY AND SERVICE LIFE PREDICTION MODEL FOR FREEZING AND THAWING CYCLE OF HIGH STRENGTH CONCRETE[J]. INDUSTRIAL CONSTRUCTION, 2005, 35(1): 11-14. doi: 10.13204/j.gyjz200501003
  • Cited by

    Periodical cited type(1)

    1. 孔祥娜. 自密实混凝土在建筑加固施工工程中的应用. 北方建筑. 2024(02): 91-95 .

    Other cited types(1)

  • Created with Highcharts 5.0.7Amount of accessChart context menuAbstract Views, HTML Views, PDF Downloads StatisticsAbstract ViewsHTML ViewsPDF Downloads2024-062024-072024-082024-092024-102024-112024-122025-012025-022025-032025-042025-0502.557.51012.515

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (115) PDF downloads(3) Cited by(2)
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return