Source Journal for Chinese Scientific and Technical Papers
Core Journal of RCCSE
Included in JST China
Included in the Hierarchical Directory of High-quality Technical Journals in Architecture Science Field
Volume 52 Issue 10
Oct.  2022
Turn off MathJax
Article Contents
WEN Bo, YANG Huifeng, SHI Benkai, CHEN Sijian. Experimental Study on Dynamic Properties of Timber-Concrete Composite Beams Using Steel Bar Truss Slabs[J]. INDUSTRIAL CONSTRUCTION, 2022, 52(10): 156-160,203. doi: 10.13204/j.gyjzG22072920
Citation: WEN Bo, YANG Huifeng, SHI Benkai, CHEN Sijian. Experimental Study on Dynamic Properties of Timber-Concrete Composite Beams Using Steel Bar Truss Slabs[J]. INDUSTRIAL CONSTRUCTION, 2022, 52(10): 156-160,203. doi: 10.13204/j.gyjzG22072920

Experimental Study on Dynamic Properties of Timber-Concrete Composite Beams Using Steel Bar Truss Slabs

doi: 10.13204/j.gyjzG22072920
  • Received Date: 2022-07-29
    Available Online: 2023-03-22
  • Timber-concrete composite structure can significantly improve the structural performance of timber buildings and can be widely mostly used in multi-story and high-rise timber buildings. However, due to the lack of research on the vibration performance of timber-concrete composite floor systems, effective design bases are still not available at present. Steel bar truss slabs have been widely used in prefabricated concrete structures. In this regard, the dynamic properties of timber-concrete composite beams using steel bar truss slabs were explored experimentally. Through the push-out test, the anti-shear performance of shear connectors was obtained, and the flexural rigidity of the composite beams was calculated. Furthermore, through dynamic tests, the dynamic properties such as natural vibration frequency and damping ratio of the composite beams were obtained. In addition, according to theoretical calculation, the effects of connector types and steel bar truss slabs on the dynamic properties of the composite beams were analyzed, and the comfortability of the composite beams and the accuracy of calculation models were evaluated based on existing standards.
  • loading
  • [1]
    刘伟庆, 杨会峰. 现代木结构研究进展[J]. 建筑结构学报, 2019, 40(2):16-43.
    [2]
    文博,杨会峰,史本凯. 现代木结构楼盖振动与控制研究进展[J].南京工业大学学报(自然科学版),2022,44(1):10-19.
    [3]
    Federal Housing Administration (FHA). Minimum property standards for one and two living units[S]. Washington D.C:FHA, 1964.
    [4]
    ONYSKO D M. Serviceability criterion for residential floors based on a field study of consumer response[R]. Project No. 03-50-10-008 for Canadian Forestry Service (CFS). Ottawa:Forintek Canada Corp, 1985.
    [5]
    OHLSSON S. Floor vibrations and human discomfort[D]. Göteborg:Chalmers University, 1980.
    [6]
    OHLSSON S. Ten years of floor vibration research-a review of aspects and some results[C]//Proceedings of the Symposium/Workshop on Serviceability of Buildings (movements, deformations, vibrations). Ottawa, Canada:University of Ottawa, 1988:435-450.
    [7]
    DOLAN J D, MURRAY T M, JOHNSON J R, et al. Preventing annoying wood floor vibrations[J]. Journal of Structural Engineering, ASCE, 1999, 125(1):19-24.
    [8]
    SKINNER J, MARTINS C, BREGULLA J, et al. Concrete upgrade to improve the vibration response of timber floors[J]. Proceedings of the Institution of Civil Engineers (Structures and Buildings), 2014, 167(9):559-568.
    [9]
    DEAM B L, FRAGIACOMO M, GROSS L S. Experimental behavior of prestressed LVL-concrete composite beams[J]. Journal of Structural Engineering, 2008, 134(5):801-809.
    [10]
    GHAFAR N H A, BRUCE D, MASSIMO F. Susceptibility to vibrations of LVL-concrete composite floors[C]//Italian Workshop on Composite Structures. Benevento, Italy:2008:321-328.
    [11]
    GHAFAR N H A, DEAM B, FRAGICOMO M. Dynamic measurement of LVL-concrete composite Floor[C]//Asia Pacific Vibration Conference. Christchurch, New Zealand:2009:22-25.
    [12]
    RIJAL R, SAMALI B, SHRESTHA R, et al. Experimental and analytical study on dynamic performance of timber-concrete composite beams[J]. Construction and Building Materials, 2015,75:46-53.
    [13]
    李文斌,杨强跃,钱磊.钢筋桁架楼承板在钢结构建筑中的应用[J].施工技术,2006(12):105-107.
    [14]
    江苏昊钢建筑科技有限公司. 钢筋桁架楼承板设计手册:Q/HG 01-2019[S]. 江苏昊钢建筑科技有限公司, 2019.
    [15]
    中华人民共和国住房和城乡建设部.木结构试验方法标准:GB/T 50329-2012[S]. 北京:中国建筑工业出版社,2012.
    [16]
    中华人民共和国住房和城乡建设部.混凝土物理力学性能试验方法标准:GB/T 50081-2019[S]. 北京:中国建筑工业出版社, 2019.
    [17]
    American Society of Testing Materials(ASTM).Standard Test Method for Determining Bending Yield Moment of Nails(ASTM F1575-2021)[S].West Conshohocken:ASTM International,2017.
    [18]
    Comité Européen de Normalization (CEN). Timber structures-joints made with mechanical fasteners-general principles for the determination of strength and deformation characteristics(EN 26891-1991)[S]. Brussels:CEN,1991.
    [19]
    陈奎孚.机械振动教程[M].北京:中国农业大学出版社,2014.
    [20]
    Comité Européen de Normalization (CEN). Eurocode 5:Design of timber structures part 1-1:general common rules and rules for buildings (EN 1995-1-1:2004)[S]. Brussels:CEN, 2004.
    [21]
    陈隽. 人致荷载与人致结构振动[M]. 北京:科学出版社,2016.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (57) PDF downloads(0) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return